New data are presented for the rare-metal bearing A-type granitoids of the AlGhurayyah stock in the northwestern segment of the Arabian Shield, a composite pluton intruding metamorphosed volcano-sedimentary succession...New data are presented for the rare-metal bearing A-type granitoids of the AlGhurayyah stock in the northwestern segment of the Arabian Shield, a composite pluton intruding metamorphosed volcano-sedimentary successions of the Silasia Formation. Metals in the granitoids are variably enriched, with up to 1 990 μg/g Zn, 7 680 μg/g Zr, 2 316 μg/g Nb, 232 μg/g Ta, 485 μg/g Hf, 670 μg/g Th, 137 μg/g U and 1 647 μg/g total rare earth elements(REE). The silexite is highly mineralized and yields higher maximum concentrations of several metals than the granitoids, including up to 1 860 μg/g Y, 9 400 μg/g Zr, 878 μg/g Hf, 1 000 μg/g Th, and 2 029 μg/g total REE. The Al-Ghurayyah stock has been assigned to an intraplate setting. Lithospheric delamination led to generation of mantle melts that supplied heat to melt the juvenile crust of the ANS. The fluorine and rare-metal enriched parental magma evolved by fractional crystallization. The quartz-rich silexite, distinct in character from ordinary hydrothermal vein quartz, is inferred to be co-genetic with the granitoids on the basis of their similar REE patterns;it is interpreted as a small volume of residual magma enriched in SiO2, volatiles, and trace metals. Mineralization took place both at the magmatic stage and later during a hydrothermal stage that concentrated these elements to economic grades.展开更多
基金the Researchers Supporting Project (No.RSPD2023R781),King Saud University,Riyadh,Saudi Arabia。
文摘New data are presented for the rare-metal bearing A-type granitoids of the AlGhurayyah stock in the northwestern segment of the Arabian Shield, a composite pluton intruding metamorphosed volcano-sedimentary successions of the Silasia Formation. Metals in the granitoids are variably enriched, with up to 1 990 μg/g Zn, 7 680 μg/g Zr, 2 316 μg/g Nb, 232 μg/g Ta, 485 μg/g Hf, 670 μg/g Th, 137 μg/g U and 1 647 μg/g total rare earth elements(REE). The silexite is highly mineralized and yields higher maximum concentrations of several metals than the granitoids, including up to 1 860 μg/g Y, 9 400 μg/g Zr, 878 μg/g Hf, 1 000 μg/g Th, and 2 029 μg/g total REE. The Al-Ghurayyah stock has been assigned to an intraplate setting. Lithospheric delamination led to generation of mantle melts that supplied heat to melt the juvenile crust of the ANS. The fluorine and rare-metal enriched parental magma evolved by fractional crystallization. The quartz-rich silexite, distinct in character from ordinary hydrothermal vein quartz, is inferred to be co-genetic with the granitoids on the basis of their similar REE patterns;it is interpreted as a small volume of residual magma enriched in SiO2, volatiles, and trace metals. Mineralization took place both at the magmatic stage and later during a hydrothermal stage that concentrated these elements to economic grades.