期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells
1
作者 Inhyeok Cho jiwon Yun +4 位作者 Boseok Seong Junseok Kim Sun Hee Choi ho-il ji Sihyuk Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期1-9,I0001,共10页
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula... PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated. 展开更多
关键词 Protonic ceramic fuel cell Cathode Triple ionic and electronic conductor Hydration property Proton uptake Gibbs free energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部