The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases.As the self-healing capacity of hya...The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases.As the self-healing capacity of hyaline cartilage is limited,timely mechanical support during neo-cartilage formation is crucial to achieving optimal repair efficacy.In this study,we devised a biodegradable bilayered scaffold,comprising chondroitin sulfate(CS)hydrogel to regenerate chondral tissue and a porous pure zinc(Zn)scaffold for regeneration of the underlying bone as mechanical support for the cartilage layer.The photocured CS hydrogel possessed a compressive strength of 82 kPa,while the porous pure Zn scaffold exhibited a yield strength of 11 MPa and a stiffness of 0.8 GPa.Such mechanical properties are similar to values reported for cancellous bone.In vitro biological experiments demonstrated that the bilayered scaffold displayed favorable cytocompatibility and promoted chondrogenic and osteogenic differentiation of bone marrow stem cells.Upon implantation,the scaffold facilitated the simultaneous regeneration of bone and cartilage tissue in a porcine model,resulting in(i)a smoother cartilage surface,(ii)more hyaline-like cartilage,and(iii)a superior integration into the adjacent host tissue.Our bilayered scaffold exhibits significant potential for clinical application in osteochondral regeneration.展开更多
基金supported by grants from the National Natural Science Foundation of China(grant numbers:82072403,82072428,82272571,82267020,82372418,52201294)Beijing Natural Science Foundation Haidian Original Innovation Joint Fund Frontier Project(L212052)+2 种基金Beijing Natural Science Foundation(L212014)Prosperos project,funded by the Interreg VA Flanders-The Netherlands program,CCI Grant No.2014TC16RFCB04the Interdisciplinary Centre for Clinical Research(IZKF)of the Faculty of Medicine of the RWTH Aachen University(OC1-1).
文摘The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases.As the self-healing capacity of hyaline cartilage is limited,timely mechanical support during neo-cartilage formation is crucial to achieving optimal repair efficacy.In this study,we devised a biodegradable bilayered scaffold,comprising chondroitin sulfate(CS)hydrogel to regenerate chondral tissue and a porous pure zinc(Zn)scaffold for regeneration of the underlying bone as mechanical support for the cartilage layer.The photocured CS hydrogel possessed a compressive strength of 82 kPa,while the porous pure Zn scaffold exhibited a yield strength of 11 MPa and a stiffness of 0.8 GPa.Such mechanical properties are similar to values reported for cancellous bone.In vitro biological experiments demonstrated that the bilayered scaffold displayed favorable cytocompatibility and promoted chondrogenic and osteogenic differentiation of bone marrow stem cells.Upon implantation,the scaffold facilitated the simultaneous regeneration of bone and cartilage tissue in a porcine model,resulting in(i)a smoother cartilage surface,(ii)more hyaline-like cartilage,and(iii)a superior integration into the adjacent host tissue.Our bilayered scaffold exhibits significant potential for clinical application in osteochondral regeneration.