期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The pig as a preclinical traumatic brain injury model:current models,functional outcome measures,and translational detection strategies 被引量:7
1
作者 holly a.kinder Emily W.Baker Franklin D.West 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第3期413-424,共12页
Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the... Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models–the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions. 展开更多
关键词 traumatic brain INJURY large animal MODEL PIG MODEL diffuse AXONAL INJURY FUNCTIONAL outcome assessment measures controlled cortical impact MODEL fluid percussion INJURY MODEL magnetic resonance imaging biomarkers
下载PDF
Identification of predictive MRI and functional biomarkers in a pediatric piglet traumatic brain injury model 被引量:4
2
作者 Hongzhi Wang Emily W.Baker +3 位作者 Abhyuday Mandal Ramana M.Pidaparti Franklin D.West holly a.kinder 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第2期338-344,共7页
Traumatic brain injury(TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments;ho... Traumatic brain injury(TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments;however, identification of specific magnetic resonance imaging(MRI) biomarkers that are most reflective of injury severity and functional prognosis remain elusive. Therefore, the objective of this study was to utilize advanced statistical approaches to identify clinically relevant MRI biomarkers and predict functional outcomes using MRI metrics in a translational large animal piglet TBI model. TBI was induced via controlled cortical impact and multiparametric MRI was performed at 24 hours and 12 weeks post-TBI using T1-weighted, T2-weighted, T2-weighted fluid attenuated inversion recovery, diffusion-weighted imaging, and diffusion tensor imaging. Changes in spatiotemporal gait parameters were also assessed using an automated gait mat at 24 hours and 12 weeks post-TBI. Principal component analysis was performed to determine the MRI metrics and spatiotemporal gait parameters that explain the largest sources of variation within the datasets. We found that linear combinations of lesion size and midline shift acquired using T2-weighted imaging explained most of the variability of the data at both 24 hours and 12 weeks post-TBI. In addition, linear combinations of velocity, cadence, and stride length were found to explain most of the gait data variability at 24 hours and 12 weeks post-TBI. Linear regression analysis was performed to determine if MRI metrics are predictive of changes in gait. We found that both lesion size and midline shift are significantly correlated with decreases in stride and step length. These results from this study provide an important first step at identifying relevant MRI and functional biomarkers that are predictive of functional outcomes in a clinically relevant piglet TBI model. This study was approved by the University of Georgia Institutional Animal Care and Use Committee(AUP: A2015 11-001) on December 22, 2015. 展开更多
关键词 controlled cortical impact gait analysis linear regression magnetic resonance imaging motor function pediatric pig model principal component analysis traumatic brain injury
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部