This paper presents a modified Rao-Blackwellized Particle Filter (RBPF) approach for the bearing-only monocular SLAM problem. While FastSLAM 2.0 is known to be one of the most computationally efficient SLAM approaches...This paper presents a modified Rao-Blackwellized Particle Filter (RBPF) approach for the bearing-only monocular SLAM problem. While FastSLAM 2.0 is known to be one of the most computationally efficient SLAM approaches;it is not applicable to certain formulations of the SLAM problem in which some of the states are not explicitly expressed in the measurement equation. This constraint impacts the versatility of the FastSLAM 2.0 in dealing with partially ob-servable systems, especially in dynamic environments where inclusion of higher order but unobservable states such as velocity and acceleration in the filtering process is highly desirable. In this paper, the formulation of an enhanced RBPF-based SLAM with proper sampling and importance weights calculation for resampling distributions is presented. As an example, the new formulation uses the higher order states of the pose of a monocular camera to carry out SLAM for a mobile robot. The results of the experiments on the robot verify the improved performance of the higher order RBPF under low parallax angles conditions.展开更多
This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comp...This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured Hinfinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control(MRAC) method, even with serious actuator saturation.展开更多
文摘This paper presents a modified Rao-Blackwellized Particle Filter (RBPF) approach for the bearing-only monocular SLAM problem. While FastSLAM 2.0 is known to be one of the most computationally efficient SLAM approaches;it is not applicable to certain formulations of the SLAM problem in which some of the states are not explicitly expressed in the measurement equation. This constraint impacts the versatility of the FastSLAM 2.0 in dealing with partially ob-servable systems, especially in dynamic environments where inclusion of higher order but unobservable states such as velocity and acceleration in the filtering process is highly desirable. In this paper, the formulation of an enhanced RBPF-based SLAM with proper sampling and importance weights calculation for resampling distributions is presented. As an example, the new formulation uses the higher order states of the pose of a monocular camera to carry out SLAM for a mobile robot. The results of the experiments on the robot verify the improved performance of the higher order RBPF under low parallax angles conditions.
文摘This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured Hinfinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control(MRAC) method, even with serious actuator saturation.