In this paper, we obtain a 1+1 dimensional integrable differential-difference model for the sine-Gordon equation by Hirota's discretization method. A bilinear Backlund transformation and the associated Lax pair are ...In this paper, we obtain a 1+1 dimensional integrable differential-difference model for the sine-Gordon equation by Hirota's discretization method. A bilinear Backlund transformation and the associated Lax pair are also proposed/or this model.展开更多
With the help of some reductions of the self-dual Yang Mills(briefly written as sdYM) equations, we introduce a Lax pair whose compatibility condition leads to a set of(2 + 1)-dimensional equations. Its first reductio...With the help of some reductions of the self-dual Yang Mills(briefly written as sdYM) equations, we introduce a Lax pair whose compatibility condition leads to a set of(2 + 1)-dimensional equations. Its first reduction gives rise to a generalized variable-coefficient Burgers equation with a forced term. Furthermore, the Burgers equation again reduces to a forced Burgers equation with constant coefficients, the standard Burgers equation, the heat equation,the Fisher equation, and the Huxley equation, respectively. The second reduction generates a few new(2 + 1)-dimensional nonlinear integrable systems, in particular, obtains a kind of(2 + 1)-dimensional integrable couplings of a new(2 + 1)-dimensional integrable nonlinear equation.展开更多
In this paper, we show that the coupled modified Kd V equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials,convergence accel...In this paper, we show that the coupled modified Kd V equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials,convergence acceleration algorithms and Laurent property are discussed in detail.展开更多
A new system is generated from a multi-linear form of a (2+1)- dimensional Volterra system. Though the system is only partially integrable and needs additional conditions to possess two-soliton solutions, its (1+...A new system is generated from a multi-linear form of a (2+1)- dimensional Volterra system. Though the system is only partially integrable and needs additional conditions to possess two-soliton solutions, its (1+1)- dimensional reduction gives an integrable equation which has been studied via reduction skills. Here, we give this (1+1)-dimensional reduction a simple bilinear form, from which a Backlund transformation is derived and the corresponding nonlinear superposition formula is built.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 90203001, the Fund of the State Key Laboratory of Scientific and Engineering Computing, the Chinese Academy of Sciences, and Hong Kong Research Grant Council under Grant No. HKBU/2016/03P
文摘In this paper, we obtain a 1+1 dimensional integrable differential-difference model for the sine-Gordon equation by Hirota's discretization method. A bilinear Backlund transformation and the associated Lax pair are also proposed/or this model.
基金Supported by the Fundamental Research Funds for the Central Universities(2013XK03)the National Natural Science Foundation of China under Grant No.11371361
文摘With the help of some reductions of the self-dual Yang Mills(briefly written as sdYM) equations, we introduce a Lax pair whose compatibility condition leads to a set of(2 + 1)-dimensional equations. Its first reduction gives rise to a generalized variable-coefficient Burgers equation with a forced term. Furthermore, the Burgers equation again reduces to a forced Burgers equation with constant coefficients, the standard Burgers equation, the heat equation,the Fisher equation, and the Huxley equation, respectively. The second reduction generates a few new(2 + 1)-dimensional nonlinear integrable systems, in particular, obtains a kind of(2 + 1)-dimensional integrable couplings of a new(2 + 1)-dimensional integrable nonlinear equation.
基金supported by National Natural Science Foundation of China(Grant Nos.11331008,11201469,11571358 and 11601237)the China Postdoctoral Science Foundation Funded Project(Grant Nos.2012M510186 and 2013T60761)the Hong Kong Research Grant Council(Grant No.GRF HKBU202512)
文摘In this paper, we show that the coupled modified Kd V equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials,convergence acceleration algorithms and Laurent property are discussed in detail.
文摘A new system is generated from a multi-linear form of a (2+1)- dimensional Volterra system. Though the system is only partially integrable and needs additional conditions to possess two-soliton solutions, its (1+1)- dimensional reduction gives an integrable equation which has been studied via reduction skills. Here, we give this (1+1)-dimensional reduction a simple bilinear form, from which a Backlund transformation is derived and the corresponding nonlinear superposition formula is built.