Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we inve...The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.展开更多
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per...The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.展开更多
Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes...Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.展开更多
Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide e...Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage.Herein,the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes(Fe_(7)S_(8)/FeS_(2)/NCNT)have been prepared through a successive pyrolysis and sulfidation approach.The Fe_(7)S_(8)/FeS_(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g^(−1) up to 100 cycles at 1.0 A g^(−1) and superior rate capability(273.4 mAh g^(−1) at 20.0 A g^(−1))in ester-based electrolyte.Meanwhile,the electrodes also demonstrated long-term cycling stability(466.7 mAh g^(−1) after 1,000 cycles at 5.0 A g^(−1))and outstanding rate capability(536.5 mAh g^(−1) at 20.0 A g^(−1))in ether-based electrolyte.This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics,high capacitive contribution,and convenient interfacial dynamics in ether-based electrolyte.展开更多
Background:Immunocompromised individuals have an increased risk of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection and severe outcomes,but we pay less attention to these people.Athymic nude mice a...Background:Immunocompromised individuals have an increased risk of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection and severe outcomes,but we pay less attention to these people.Athymic nude mice are a murine strain with a spontaneous deficiency of the Foxn1 gene,which can result in thymic degeneration or its absence,leading to immunosuppression and a decrease in the number of T cells,and are widely used in preclinical evaluations of disease in immunocompromised populations.Methods:We investigated the protection of the coronavirus disease 2019(COVID-19)inactivated vaccine(CoronaVac)against the infection of wild-type SARS-CoV-2(WH-09)or Omicron variant utilizing a hybrid-type nude-hACE2 mouse model.Results:Compared with nude-hACE2/W mice,the viral load in the brain and lung tissue of nude-hACE2 mice(nude-hACE2/WV)infected with WH-09 after vaccination significantly decreased,and the histopathological changes were also reduced.The viral load in the brain and lung tissue of nude-hACE2 mice(nude-hACE2/OV)infected with the Omicron variant after vaccination was lower than that in nude-hACE2/O,but histopathological symptoms did not improve significantly.Conclusion:CoronaVac provides some protection against infection of both WH-09 and the Omicron variant in the nude-hACE2 mice.Our findings aimed to provide a reference for vaccination against SARS-CoV-2 in immunocompromised populations.展开更多
Vector beams with spiral phase and spatially varying polarization profiles have many applications from optical micromanipulation to materials processing. Here, we propose and demonstrate an atomic spatial mode extract...Vector beams with spiral phase and spatially varying polarization profiles have many applications from optical micromanipulation to materials processing. Here, we propose and demonstrate an atomic spatial mode extracting scheme for the vector beam based on polarization-dependent absorption in the atom vapor. By employing the linear polarization pump beam which induces polarization sensitive absorption in the atomic ensemble, a counter-propagated weak probe vector beam is extracted by spatial absorption, and extracted part still maintains the original polarization and the vortex phase.The topological charges of the extracted mode are verified by interfering with the Gaussian beam, and it can be found that the orbital angular momentum is conserved in the extracting process. Our work will have potential applications in non-destructive spatial mode identification, and is also useful for studying higher-dimensional quantum information based on atomic ensembles.展开更多
BACKGROUND Type 2 hereditary hemorrhagic telangiectasia(HHT)is a rare autosomal dominant disease and is associated with ALK1 gene mutations.Type 2 HHT patients primarily suffer from recurrent bleeding.There is current...BACKGROUND Type 2 hereditary hemorrhagic telangiectasia(HHT)is a rare autosomal dominant disease and is associated with ALK1 gene mutations.Type 2 HHT patients primarily suffer from recurrent bleeding.There is currently no promising treatment.CASE SUMMARY A 5-year-old Chinese patient(III23)was admitted to Zhongshan Hospital for recurrent melena occurring over 2 mo.She had been experiencing epistaxis for years and had been diagnosed with idiopathic pulmonary hypertension 4 mo before presentation.Abdominal computed tomography examination showed hepatic arteriovenous malformation.Gene testing revealed a c.1121G>A mutation on the ALK1 gene.According to the international diagnostic criteria,this patient was diagnosed with HHT.In addition,8 more family members exhibited HHT symptoms to varying degrees.Gene testing in 5 family members(2 with HHT symptoms and 3 without HHT symptoms)revealed the ALK1 c.1121G>A mutation in the 2 family members with HHT symptoms.This missense mutation results in the substitution of arginine for glutamine at amino acid position 374(R374Q)in the conserved functional kinase domain of ALK1.Biological studies revealed that this mutation decreased the kinase activity of ALK1 and impeded the phosphorylation of its substrate Smad1.Moreover,the R374Q mutant downregulated the protein level of collagen-1,a fibrogenic factor,indicating abnormal fiber generation during vascular formation.CONCLUSION The R374Q mutant of ALK1 and its subsequent influence on fiber generation highly indicated its pathogenic role in this family with type 2 HHT.Detection of this gene mutation will facilitate early diagnosis of suspected type 2 HHT patients,and mechanistic studies will provide insights for future therapy.展开更多
BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated w...BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR). DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007. MATERIALS: Sixty healthy Wistar rats aged 2-4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection of T9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by Perkin Elmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension tbrougb two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites. MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model groups, with three rats allocated to the sham-operated group. GDNF mRNA expression was semiquantitatively analyzed by RT-PCR. RESULTS: The sham-operated group exhibited extremely low GDNF mRNA expression. GDNF mRNA expression significantly increased at 24 hours after spinal cord injury, reached a peak level at 72 hours, and slowly decreased thereafter. However, it remained higher than normal levels at 7 days (P 〈 0.05). At all time points following spinal cord injury, GDNF mRNA expression was significantly greater in the BMSC transplantation group than in the model group (P 〈 0.05). CONCLUSION: Transplantation of BMSCs into the injured spinal cord up-regulated GDNF mRNA expression, thereby promoting repair of the injured spinal cord.展开更多
Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechan...Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.展开更多
AIM To optimize the hepatobiliary phase delay time(HBPDT) of Gd-EOB-DTPA-enhanced magnetic resonance imaging(GED-MRI) for more efficient identification of hepatocellular carcinoma(HCC) occurring in different degrees o...AIM To optimize the hepatobiliary phase delay time(HBPDT) of Gd-EOB-DTPA-enhanced magnetic resonance imaging(GED-MRI) for more efficient identification of hepatocellular carcinoma(HCC) occurring in different degrees of cirrhosis assessed by Child-Pugh(CP) score.METHODS The liver parenchyma signal intensity(LPSI), the liver parenchyma(LP)/HCC signal ratios, and the visibility of HCC at HBP-DT of 5, 10, 15, 20, and 25 min(i.e., DT-5, DT-10, DT-15, DT-20, and DT-25) after injection of GdEOB-DTPA were collected and analyzed in 73 patients with cirrhosis of different degrees of severity(including 42 patients suffering from HCC) and 18 healthy adult controls.RESULTS The LPSI increased with HBP-DT more significantly in the healthy group than in the cirrhosis group(F = 17.361, P < 0.001). The LP/HCC signal ratios had a significant difference(F = 12.453, P < 0.001) among various HBP-DT points, as well as between CP-A and CP-B/C subgroups(F = 9.761, P < 0.001). The constituent ratios of HCC foci identified as obvious hypointensity(+++), moderate hypointensity(++), and mild hypointensity or isointensity(+/-) kept stable from DT-10 to DT-25: 90.6%, 9.4%, and 0.0% in the CP-A subgroup; 50.0%, 50.0%, and 0.0% in the CP-B subgroup; and 0.0%, 0.0%, and 100.0% in the CP-C subgroup, respectively.CONCLUSION The severity of liver cirrhosis has significant negative influence on the HCC visualization by GED-MRI. DT-10 is more efficient and practical than other HBP-DT points to identify most of HCC foci emerging in CP-A cirrhosis, as well as in CP-B cirrhosis; but an HBP-DT of 15 min or longer seems more appropriate than DT-10 for visualization of HCC in patients with CP-C cirrhosis.展开更多
Background:Since December 2019,an outbreak of the Corona Virus disease 2019(COVID-19)caused by severe acute respiratory syndrome coronavirus(SARS-CoV-2)in Wuhan,China,has become a public health emergency of internatio...Background:Since December 2019,an outbreak of the Corona Virus disease 2019(COVID-19)caused by severe acute respiratory syndrome coronavirus(SARS-CoV-2)in Wuhan,China,has become a public health emergency of international concern.The high fatality of aged cases caused by SARS-CoV-2 was a need to explore the possible age-related phenomena with non-human primate models.Methods:Three 3-5 years old and two 15 years old rhesus macaques were intratracheally infected with SARS-CoV-2,and then analyzed by clinical signs,viral replication,chest X-ray,histopathological changes and immune response.Results:Viral replication of nasopharyngeal swabs,anal swabs and lung in old monkeys was more active than that in young monkeys for 14 days after SARS-CoV-2 challenge.Monkeys developed typical interstitial pneumonia characterized by thickened alveolar septum accompanied with inflammation and edema,notably,old monkeys exhibited diffuse severe interstitial pneumonia.Viral antigens were detected mainly in alveolar epithelial cells and macrophages.Conclusion:SARS-CoV-2 caused more severe interstitial pneumonia in old monkeys than that in young monkeys.Rhesus macaque models infected with SARS-CoV-2 provided insight into the pathogenic mechanism and facilitated the development of vaccines and therapeutics against SARS-CoV-2 infection.展开更多
In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the tw...In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2^(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.展开更多
Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3...Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2).展开更多
Panicle traits directly associated with yield are a target of selection in rice breeding.Although abundant QTL for panicle traits have been identified,there is little information about the genetic basis of panicle tra...Panicle traits directly associated with yield are a target of selection in rice breeding.Although abundant QTL for panicle traits have been identified,there is little information about the genetic basis of panicle traits in japonica super rice(JSR)cultivars.In this study,we identified QTL for panicle traits in three environments using a population of recombinant inbred lines(RILs)derived from the JSR cultivar Liaoxing 1.A total of 197 RILs were genotyped with 285 polymorphic SNP markers.Phenotypic data and best linear unbiased prediction(BLUP)value of primary branch number(BNP),secondary branch number(BNS),grain number on primary branch(GNP),grain number on secondary branch(GNS),grain number per panicle(GN),panicle length(PL)and grain density(GD)were used for QTL mapping.A total of 105 QTL for seven panicle traits were detected in single environments using their BLUP values.Individual QTL explained 0.51%–52.22%of the phenotypic variation.Of the 105,49 were also detected by joint multi-environment analyses.Five stable QTL:qGD9,qPL9,qGNP9,qGN6,and qBNS6.2 were identified in multiple environments.qGD9,qGNP9,and qPL9,co-localizing on chromosome 9,likely correspond to the known gene DEP1.Importantly,qGN6 and qBNS6.2 in a co-localization region were identified as novel QTL,and their Liaoxing 1 alleles had a positive effect.Several RILs with the QTL allele combinations qGD9/qPL9/qGNP9 and qGN6/qBNS6.2 showed greater GN.Further investigation of the putative gene underlying qGN6/qBNS6.2 would shed light on the molecular mechanism of JSR.展开更多
Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coe...Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coefficient,system stiffness coefficient,disc spring cubic stiffness factor,and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA.In this regard,the nonlinear piezomagnetic equation,Jiles-Atherton hysteresis model,quadratic domain rotation model,and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA.Moreover,the multi-scale method and the singularity theory are used to determine the eo-dimensional two-bifurcation characteristics of the system.Then,the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed.Finally,the fourth-order Runge-Kutta method is used to obtain the time domain waveform,phase portrait and Poincare mapping diagrams of the system.Subsequently,the obtained three graphs are analyzed.The obtained results show that when the system output is stable,the variation range of each parameter can be determined.Moreover,the stability interval of system damping coefficient,system stiffness coefficient,and the coefficient of the cubic stiffness term of the disc spring are obtained.Furthermore,the stability interval of the exciting force and the excitation frequency are determined.展开更多
For preparing large-scale nano-grained and ultrafine-grained steel sheets by warm rolling and annealing, the effects of deforming temperature on both the flow stress and the microstructure evolution of 09MnNiD steel w...For preparing large-scale nano-grained and ultrafine-grained steel sheets by warm rolling and annealing, the effects of deforming temperature on both the flow stress and the microstructure evolution of 09MnNiD steel with lath martensitic microstructure were studied by warm-compression test and transmission electron microscopy (TEM) observation. Thereafter, the steel with the lath martensitic structure was multi-pass warm-rolled and then annealed. TEM results indicate that nano-grained and ultrafine-grained steel sheets are formed by warm rolling at 400℃ and annealing at 400-600℃. In comparison with the as-warm-rolled specimen, the tensile strength at room temperature changes a little when the rolled samples are annealed below 450℃, and the tensile strength is greatly lowered as the annealing temperature increases to above 550℃.展开更多
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金Project supported by the Youth Innovation Promotion Association CASState Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222)
文摘The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
基金financially supported by the Australian Research Council(ARC) through the Future Fellowship(FT180100705)the financial support from China Scholarship Council+3 种基金the support from UTS-HUST Key Technology Partner Seed Fundthe support from Open Project of State Key Laboratory of Advanced Special Steel,the Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-04)the Science and Technology Commission of Shanghai Municipality(22010500400)“Joint International Laboratory on Environmental and Energy Frontier Materials”and“Innovation Research Team of High–Level Local Universities in Shanghai”in Shanghai University。
文摘The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.
基金the National Natural Science Foundation of China(Nos.52175143 and 51571150)。
文摘Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.
基金support by the National Natural Science Foundation of China(G.No.22102141).
文摘Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage.Herein,the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes(Fe_(7)S_(8)/FeS_(2)/NCNT)have been prepared through a successive pyrolysis and sulfidation approach.The Fe_(7)S_(8)/FeS_(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g^(−1) up to 100 cycles at 1.0 A g^(−1) and superior rate capability(273.4 mAh g^(−1) at 20.0 A g^(−1))in ester-based electrolyte.Meanwhile,the electrodes also demonstrated long-term cycling stability(466.7 mAh g^(−1) after 1,000 cycles at 5.0 A g^(−1))and outstanding rate capability(536.5 mAh g^(−1) at 20.0 A g^(−1))in ether-based electrolyte.This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics,high capacitive contribution,and convenient interfacial dynamics in ether-based electrolyte.
基金the National Key Research and Development Project of China,Grant/Award Number:2020YFA0707600。
文摘Background:Immunocompromised individuals have an increased risk of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection and severe outcomes,but we pay less attention to these people.Athymic nude mice are a murine strain with a spontaneous deficiency of the Foxn1 gene,which can result in thymic degeneration or its absence,leading to immunosuppression and a decrease in the number of T cells,and are widely used in preclinical evaluations of disease in immunocompromised populations.Methods:We investigated the protection of the coronavirus disease 2019(COVID-19)inactivated vaccine(CoronaVac)against the infection of wild-type SARS-CoV-2(WH-09)or Omicron variant utilizing a hybrid-type nude-hACE2 mouse model.Results:Compared with nude-hACE2/W mice,the viral load in the brain and lung tissue of nude-hACE2 mice(nude-hACE2/WV)infected with WH-09 after vaccination significantly decreased,and the histopathological changes were also reduced.The viral load in the brain and lung tissue of nude-hACE2 mice(nude-hACE2/OV)infected with the Omicron variant after vaccination was lower than that in nude-hACE2/O,but histopathological symptoms did not improve significantly.Conclusion:CoronaVac provides some protection against infection of both WH-09 and the Omicron variant in the nude-hACE2 mice.Our findings aimed to provide a reference for vaccination against SARS-CoV-2 in immunocompromised populations.
文摘Vector beams with spiral phase and spatially varying polarization profiles have many applications from optical micromanipulation to materials processing. Here, we propose and demonstrate an atomic spatial mode extracting scheme for the vector beam based on polarization-dependent absorption in the atom vapor. By employing the linear polarization pump beam which induces polarization sensitive absorption in the atomic ensemble, a counter-propagated weak probe vector beam is extracted by spatial absorption, and extracted part still maintains the original polarization and the vortex phase.The topological charges of the extracted mode are verified by interfering with the Gaussian beam, and it can be found that the orbital angular momentum is conserved in the extracting process. Our work will have potential applications in non-destructive spatial mode identification, and is also useful for studying higher-dimensional quantum information based on atomic ensembles.
文摘BACKGROUND Type 2 hereditary hemorrhagic telangiectasia(HHT)is a rare autosomal dominant disease and is associated with ALK1 gene mutations.Type 2 HHT patients primarily suffer from recurrent bleeding.There is currently no promising treatment.CASE SUMMARY A 5-year-old Chinese patient(III23)was admitted to Zhongshan Hospital for recurrent melena occurring over 2 mo.She had been experiencing epistaxis for years and had been diagnosed with idiopathic pulmonary hypertension 4 mo before presentation.Abdominal computed tomography examination showed hepatic arteriovenous malformation.Gene testing revealed a c.1121G>A mutation on the ALK1 gene.According to the international diagnostic criteria,this patient was diagnosed with HHT.In addition,8 more family members exhibited HHT symptoms to varying degrees.Gene testing in 5 family members(2 with HHT symptoms and 3 without HHT symptoms)revealed the ALK1 c.1121G>A mutation in the 2 family members with HHT symptoms.This missense mutation results in the substitution of arginine for glutamine at amino acid position 374(R374Q)in the conserved functional kinase domain of ALK1.Biological studies revealed that this mutation decreased the kinase activity of ALK1 and impeded the phosphorylation of its substrate Smad1.Moreover,the R374Q mutant downregulated the protein level of collagen-1,a fibrogenic factor,indicating abnormal fiber generation during vascular formation.CONCLUSION The R374Q mutant of ALK1 and its subsequent influence on fiber generation highly indicated its pathogenic role in this family with type 2 HHT.Detection of this gene mutation will facilitate early diagnosis of suspected type 2 HHT patients,and mechanistic studies will provide insights for future therapy.
基金Supported by: Science Research Foundation for Colleges of Liaoning Provincial Education Department, No. 2004F072
文摘BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR). DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007. MATERIALS: Sixty healthy Wistar rats aged 2-4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection of T9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by Perkin Elmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension tbrougb two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites. MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model groups, with three rats allocated to the sham-operated group. GDNF mRNA expression was semiquantitatively analyzed by RT-PCR. RESULTS: The sham-operated group exhibited extremely low GDNF mRNA expression. GDNF mRNA expression significantly increased at 24 hours after spinal cord injury, reached a peak level at 72 hours, and slowly decreased thereafter. However, it remained higher than normal levels at 7 days (P 〈 0.05). At all time points following spinal cord injury, GDNF mRNA expression was significantly greater in the BMSC transplantation group than in the model group (P 〈 0.05). CONCLUSION: Transplantation of BMSCs into the injured spinal cord up-regulated GDNF mRNA expression, thereby promoting repair of the injured spinal cord.
基金sponsored by the National Natural Science Foundation of China ( 51571150,11572222)Tianjin Natural Science Foundation ( 14JCYBJC16900)
文摘Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.
文摘AIM To optimize the hepatobiliary phase delay time(HBPDT) of Gd-EOB-DTPA-enhanced magnetic resonance imaging(GED-MRI) for more efficient identification of hepatocellular carcinoma(HCC) occurring in different degrees of cirrhosis assessed by Child-Pugh(CP) score.METHODS The liver parenchyma signal intensity(LPSI), the liver parenchyma(LP)/HCC signal ratios, and the visibility of HCC at HBP-DT of 5, 10, 15, 20, and 25 min(i.e., DT-5, DT-10, DT-15, DT-20, and DT-25) after injection of GdEOB-DTPA were collected and analyzed in 73 patients with cirrhosis of different degrees of severity(including 42 patients suffering from HCC) and 18 healthy adult controls.RESULTS The LPSI increased with HBP-DT more significantly in the healthy group than in the cirrhosis group(F = 17.361, P < 0.001). The LP/HCC signal ratios had a significant difference(F = 12.453, P < 0.001) among various HBP-DT points, as well as between CP-A and CP-B/C subgroups(F = 9.761, P < 0.001). The constituent ratios of HCC foci identified as obvious hypointensity(+++), moderate hypointensity(++), and mild hypointensity or isointensity(+/-) kept stable from DT-10 to DT-25: 90.6%, 9.4%, and 0.0% in the CP-A subgroup; 50.0%, 50.0%, and 0.0% in the CP-B subgroup; and 0.0%, 0.0%, and 100.0% in the CP-C subgroup, respectively.CONCLUSION The severity of liver cirrhosis has significant negative influence on the HCC visualization by GED-MRI. DT-10 is more efficient and practical than other HBP-DT points to identify most of HCC foci emerging in CP-A cirrhosis, as well as in CP-B cirrhosis; but an HBP-DT of 15 min or longer seems more appropriate than DT-10 for visualization of HCC in patients with CP-C cirrhosis.
基金This work was supported by the National Research and Development Project of China(Grant No.2020YFC0841100)Fundamental Research Funds for CAMS of China(Grant No.2020HY320001)+3 种基金National Key Research and Development Project of China(Grant No.2016YFD0500304)CAMS initiative for Innovative Medicine of China(Grant No.2016-I2M-2-006)National Mega projects of China for Major Infectious Diseases(Grant No.2017ZX10304402)and National Key Research and Development Programme of China(2016YFD0500301,2020YFC0840800,2020YFC0840900).
文摘Background:Since December 2019,an outbreak of the Corona Virus disease 2019(COVID-19)caused by severe acute respiratory syndrome coronavirus(SARS-CoV-2)in Wuhan,China,has become a public health emergency of international concern.The high fatality of aged cases caused by SARS-CoV-2 was a need to explore the possible age-related phenomena with non-human primate models.Methods:Three 3-5 years old and two 15 years old rhesus macaques were intratracheally infected with SARS-CoV-2,and then analyzed by clinical signs,viral replication,chest X-ray,histopathological changes and immune response.Results:Viral replication of nasopharyngeal swabs,anal swabs and lung in old monkeys was more active than that in young monkeys for 14 days after SARS-CoV-2 challenge.Monkeys developed typical interstitial pneumonia characterized by thickened alveolar septum accompanied with inflammation and edema,notably,old monkeys exhibited diffuse severe interstitial pneumonia.Viral antigens were detected mainly in alveolar epithelial cells and macrophages.Conclusion:SARS-CoV-2 caused more severe interstitial pneumonia in old monkeys than that in young monkeys.Rhesus macaque models infected with SARS-CoV-2 provided insight into the pathogenic mechanism and facilitated the development of vaccines and therapeutics against SARS-CoV-2 infection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534008,11605126,and 11804271)the Fund from the Ministry of Science and Technology of China(Grant No.2016YFA0301404)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2017JQ1025)the Doctoral Fund of the Ministry of Education of China(Grant Nos.2016M592772 and 2018M631137)the Fundamental Research Funds for the Central Universities
文摘In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2^(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.
基金supported by the National Natural Science Foundation of China (51772069)。
文摘Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2).
基金The study was supported by the National Natural Science Foundation of China(31901526)China Postdoctoral Science Foundation Grant(2019M651139)and Liaoning Key Agricultural Program(2019JH1/10200001-2).
文摘Panicle traits directly associated with yield are a target of selection in rice breeding.Although abundant QTL for panicle traits have been identified,there is little information about the genetic basis of panicle traits in japonica super rice(JSR)cultivars.In this study,we identified QTL for panicle traits in three environments using a population of recombinant inbred lines(RILs)derived from the JSR cultivar Liaoxing 1.A total of 197 RILs were genotyped with 285 polymorphic SNP markers.Phenotypic data and best linear unbiased prediction(BLUP)value of primary branch number(BNP),secondary branch number(BNS),grain number on primary branch(GNP),grain number on secondary branch(GNS),grain number per panicle(GN),panicle length(PL)and grain density(GD)were used for QTL mapping.A total of 105 QTL for seven panicle traits were detected in single environments using their BLUP values.Individual QTL explained 0.51%–52.22%of the phenotypic variation.Of the 105,49 were also detected by joint multi-environment analyses.Five stable QTL:qGD9,qPL9,qGNP9,qGN6,and qBNS6.2 were identified in multiple environments.qGD9,qGNP9,and qPL9,co-localizing on chromosome 9,likely correspond to the known gene DEP1.Importantly,qGN6 and qBNS6.2 in a co-localization region were identified as novel QTL,and their Liaoxing 1 alleles had a positive effect.Several RILs with the QTL allele combinations qGD9/qPL9/qGNP9 and qGN6/qBNS6.2 showed greater GN.Further investigation of the putative gene underlying qGN6/qBNS6.2 would shed light on the molecular mechanism of JSR.
基金Project supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2017M010660)the Major Project of the Inner Mongolia Autonomous Region,China(Grant No.2018ZD10).
文摘Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coefficient,system stiffness coefficient,disc spring cubic stiffness factor,and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA.In this regard,the nonlinear piezomagnetic equation,Jiles-Atherton hysteresis model,quadratic domain rotation model,and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA.Moreover,the multi-scale method and the singularity theory are used to determine the eo-dimensional two-bifurcation characteristics of the system.Then,the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed.Finally,the fourth-order Runge-Kutta method is used to obtain the time domain waveform,phase portrait and Poincare mapping diagrams of the system.Subsequently,the obtained three graphs are analyzed.The obtained results show that when the system output is stable,the variation range of each parameter can be determined.Moreover,the stability interval of system damping coefficient,system stiffness coefficient,and the coefficient of the cubic stiffness term of the disc spring are obtained.Furthermore,the stability interval of the exciting force and the excitation frequency are determined.
基金the National Natural Science Foundations of China(Nos.50271060 and 50371074)the Natural Science Foundation of Hebei Province,China(No.503291).
文摘For preparing large-scale nano-grained and ultrafine-grained steel sheets by warm rolling and annealing, the effects of deforming temperature on both the flow stress and the microstructure evolution of 09MnNiD steel with lath martensitic microstructure were studied by warm-compression test and transmission electron microscopy (TEM) observation. Thereafter, the steel with the lath martensitic structure was multi-pass warm-rolled and then annealed. TEM results indicate that nano-grained and ultrafine-grained steel sheets are formed by warm rolling at 400℃ and annealing at 400-600℃. In comparison with the as-warm-rolled specimen, the tensile strength at room temperature changes a little when the rolled samples are annealed below 450℃, and the tensile strength is greatly lowered as the annealing temperature increases to above 550℃.