Let (X, d) be a metric space and f be a continuous map from X to X. Denote by EP(f) and Ω(f) the sets of eventually periodic points and non-wandering points of f, respectively. It is well known that for a tree ...Let (X, d) be a metric space and f be a continuous map from X to X. Denote by EP(f) and Ω(f) the sets of eventually periodic points and non-wandering points of f, respectively. It is well known that for a tree map f, the following statements hold: (1) If x ∈ Ω(f) - Ω(f^n) for some n ≥ 2, then x ∈ EP(f). (2) Ω(f) is contained in the closure of EP(f). The aim of this note is to show that the above results do not hold for maps of dendrites D with Card(End(D)) = No (the cardinal number of the set of positive integers).展开更多
Let (T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote by w(x, f) and P(f) the w-limit set of x under f and the set of periodic points of f, respectively. Write Ω(x, f...Let (T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote by w(x, f) and P(f) the w-limit set of x under f and the set of periodic points of f, respectively. Write Ω(x, f) = {yl there exist a sequence of points xk ∈ T and a sequence of positive integers n1 〈 n2 〈 … such that lim k→∞ Xk = X and lim k→∞ f nk (xk) = y}. In this paper, we show that the following statements are equivalent: (1) f is equicontinuous. (2) w(x, f) = Ω(x, f) for any x ∈ T. (3) ∩ ∞ n=1 f n(T) = P(f), and w(x, f) is a periodic orbit for every x ∈ T and map h: x → w(x, f) (x ∈ T) is continuous. (4) Ω(x, f) is a periodic orbit for any x ∈ T.展开更多
In this paper, we introduce the notion of the strongly simple cycles with some rotation pair for interval maps and prove that, if an interval map has a cycle with given rotation pair, then it, has a strongly simple cy...In this paper, we introduce the notion of the strongly simple cycles with some rotation pair for interval maps and prove that, if an interval map has a cycle with given rotation pair, then it, has a strongly simple cycle with the same rotation pair.展开更多
基金Supported by NSFC(Grant Nos.11461003,11261005)NSF of Guangxi(Grant No.2014GXNSFBA118003)
文摘Let (X, d) be a metric space and f be a continuous map from X to X. Denote by EP(f) and Ω(f) the sets of eventually periodic points and non-wandering points of f, respectively. It is well known that for a tree map f, the following statements hold: (1) If x ∈ Ω(f) - Ω(f^n) for some n ≥ 2, then x ∈ EP(f). (2) Ω(f) is contained in the closure of EP(f). The aim of this note is to show that the above results do not hold for maps of dendrites D with Card(End(D)) = No (the cardinal number of the set of positive integers).
基金Supported by NNSF of China(Grant No.11461003)SF of Guangxi Univresity of Finance and Economics(Grant Nos.2016KY15,2016ZDKT06 and 2016TJYB06)
文摘Let (T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote by w(x, f) and P(f) the w-limit set of x under f and the set of periodic points of f, respectively. Write Ω(x, f) = {yl there exist a sequence of points xk ∈ T and a sequence of positive integers n1 〈 n2 〈 … such that lim k→∞ Xk = X and lim k→∞ f nk (xk) = y}. In this paper, we show that the following statements are equivalent: (1) f is equicontinuous. (2) w(x, f) = Ω(x, f) for any x ∈ T. (3) ∩ ∞ n=1 f n(T) = P(f), and w(x, f) is a periodic orbit for every x ∈ T and map h: x → w(x, f) (x ∈ T) is continuous. (4) Ω(x, f) is a periodic orbit for any x ∈ T.
文摘In this paper, we introduce the notion of the strongly simple cycles with some rotation pair for interval maps and prove that, if an interval map has a cycle with given rotation pair, then it, has a strongly simple cycle with the same rotation pair.