期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On the Upper Bounds of the Numbers of Perfect Matchings in Graphs with Given Parameters
1
作者 hong lin xiao-feng guo 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第1期155-160,共6页
Let φ(G), κ(G), α(G), χ(G), cl(G), diam(G) denote the number of perfect matchings, connectivity, independence number, chromatic number, clique number and diameter of a graph G, respectively. In this no... Let φ(G), κ(G), α(G), χ(G), cl(G), diam(G) denote the number of perfect matchings, connectivity, independence number, chromatic number, clique number and diameter of a graph G, respectively. In this note, by constructing some extremal graphs, the following extremal problems are solved: 1. max {φ(G): |V(G)| = 2n, κ(G)≤ k} = k[(2n - 3)!!], 2. max{φ(G): |V(G)| = 2n,α(G) ≥ k} =[∏ i=0^k-1 (2n - k-i](2n - 2k - 1)!!], 3. max{φ(G): |V(G)|=2n, χ(G) ≤ k} =φ(Tk,2n) Tk,2n is the Turán graph, that is a complete k-partitc graph on 2n vertices in which all parts are as equal in size as possible, 4. max{φ(G): |V(G)| = 2n, cl(G) = 2} = n!, 5. max{φ(G): |V(G)| = 2n, diam(G) ≥〉 2} = (2n - 2)(2n - 3)[(2n - 5)!!], max{φ(G): |V(G)| = 2n, diam(G) ≥ 3} = (n - 1)^2[(2n - 5)!!]. 展开更多
关键词 Perfect matching CONNECTIVITY chromatic number clique number DIAMETER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部