Let φ(G), κ(G), α(G), χ(G), cl(G), diam(G) denote the number of perfect matchings, connectivity, independence number, chromatic number, clique number and diameter of a graph G, respectively. In this no...Let φ(G), κ(G), α(G), χ(G), cl(G), diam(G) denote the number of perfect matchings, connectivity, independence number, chromatic number, clique number and diameter of a graph G, respectively. In this note, by constructing some extremal graphs, the following extremal problems are solved: 1. max {φ(G): |V(G)| = 2n, κ(G)≤ k} = k[(2n - 3)!!], 2. max{φ(G): |V(G)| = 2n,α(G) ≥ k} =[∏ i=0^k-1 (2n - k-i](2n - 2k - 1)!!], 3. max{φ(G): |V(G)|=2n, χ(G) ≤ k} =φ(Tk,2n) Tk,2n is the Turán graph, that is a complete k-partitc graph on 2n vertices in which all parts are as equal in size as possible, 4. max{φ(G): |V(G)| = 2n, cl(G) = 2} = n!, 5. max{φ(G): |V(G)| = 2n, diam(G) ≥〉 2} = (2n - 2)(2n - 3)[(2n - 5)!!], max{φ(G): |V(G)| = 2n, diam(G) ≥ 3} = (n - 1)^2[(2n - 5)!!].展开更多
基金Supported by the National Natural Science Foundation of China(No.10331020)
文摘Let φ(G), κ(G), α(G), χ(G), cl(G), diam(G) denote the number of perfect matchings, connectivity, independence number, chromatic number, clique number and diameter of a graph G, respectively. In this note, by constructing some extremal graphs, the following extremal problems are solved: 1. max {φ(G): |V(G)| = 2n, κ(G)≤ k} = k[(2n - 3)!!], 2. max{φ(G): |V(G)| = 2n,α(G) ≥ k} =[∏ i=0^k-1 (2n - k-i](2n - 2k - 1)!!], 3. max{φ(G): |V(G)|=2n, χ(G) ≤ k} =φ(Tk,2n) Tk,2n is the Turán graph, that is a complete k-partitc graph on 2n vertices in which all parts are as equal in size as possible, 4. max{φ(G): |V(G)| = 2n, cl(G) = 2} = n!, 5. max{φ(G): |V(G)| = 2n, diam(G) ≥〉 2} = (2n - 2)(2n - 3)[(2n - 5)!!], max{φ(G): |V(G)| = 2n, diam(G) ≥ 3} = (n - 1)^2[(2n - 5)!!].