In this paper,we study the existence of positive solutions for the nonlinear singular third-order three-point boundary value problemu (t) = λa(t)f(t,u(t)),u(0) = u (1) = u (η) = 0,where λ is a positiv...In this paper,we study the existence of positive solutions for the nonlinear singular third-order three-point boundary value problemu (t) = λa(t)f(t,u(t)),u(0) = u (1) = u (η) = 0,where λ is a positive parameter and 0 ≤ η 1 2 .By using the classical Krasnosel’skii’s fixed point theorem in cone,we obtain various new results on the existence of positive solution,and the solution is strictly increasing.Finally we give an example.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10871160)
文摘In this paper,we study the existence of positive solutions for the nonlinear singular third-order three-point boundary value problemu (t) = λa(t)f(t,u(t)),u(0) = u (1) = u (η) = 0,where λ is a positive parameter and 0 ≤ η 1 2 .By using the classical Krasnosel’skii’s fixed point theorem in cone,we obtain various new results on the existence of positive solution,and the solution is strictly increasing.Finally we give an example.