期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research of detonation products of RDX/Al from the perspective of composition 被引量:1
1
作者 Xing-han Li Zhi-cong Yi +6 位作者 Qi-jun Liu Fu-sheng Liu Ze-teng Zhang Shen-yuan Hou Xian-xu Zheng Xu Zhang hong-bo pei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期31-45,共15页
Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products ha... Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products has not been understood well.In the present study,we conducted long-time tests(approximately 1 ms)of a metal rod driven by detonation products of RDX,RDX/Li F,and RDX/Al.In addition,we used laser velocimetry(PDV)to measure the freesurface velocity of the rod.Thermochemical code DLCHEQ was successfully applied to the hydrodynamic program SSS to perform the roddriven test,and a novel method was established to study the EOS of detonation products from the perspective of composition.The reliability of DLCEHQ was validated by a small deviation(<10%)between the experimental rod free-surface velocity of RDX and the calculated results;the deviation was considerably less than that from the results obtained using the JWL EOS and ideal-gas EOS.The endothermic process and the reaction of Al powders(Al+H_(2)O+NO+CO_(2)→CO+H_(2)+N_(2)+Al_(2)O_(3))were analyzed by calculating the rod free-surface velocity of RDX/Li F and RDX/Al,respectively.The results of the present study demonstrated that the thermodynamic state of Al powders has notable influence on the EOS of aluminized detonation products,and the findings were compared with those of previous studies.First,the temperature equilibrium between Al powders and CHNO products is not always achieved,and the disequilibrium is more obvious when the reaction of Al powders is stronger.Second,the reaction rate of Al powders depends on pressure and Al content.Finally,the endothermic process of Al powders has a high contribution to the decrease in the work ability of RDX/Al instead of the gasconsumption mechanism of the Al reaction.More than half of the reaction heat of Al powders is used to heat itself,whereas the gas consumption during the reaction is negligible. 展开更多
关键词 Aluminized explosive Detonation products EOS Rod-driven test Compositional evolution
下载PDF
Structural response of aluminum core–shell particles in detonation environment 被引量:1
2
作者 Qing-Jie Jiao Qiu-Shi Wang +1 位作者 Jian-Xin Nie hong-bo pei 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期387-392,共6页
Natural aluminum particles have the core-shell structure.The structure response refers to the mechanical behavior of the aluminum particle structure caused by external influences.The dynamic behavior of the structural... Natural aluminum particles have the core-shell structure.The structure response refers to the mechanical behavior of the aluminum particle structure caused by external influences.The dynamic behavior of the structural response of aluminum core-shell particles before combustion is of great importance for the aluminum powder burning mechanism and its applications.In this paper,an aluminum particle combustion experiment in a detonation environment is conducted and analyzed;the breakage factors of aluminum particles shell in detonation environment are analyzed.The experiment results show that the aluminum particle burns in a gaseous state and condenses into a sub-micron particle cluster.The calculation and simulation demonstrate that the rupture of aluminum particle shell in the detonation environment is mainly caused by the impact of the detonation wave.The detonation wave impacts the aluminum particles,resulting in shell cracking,and due to the shrinkage-expansion of the aluminum core and stripping of the detonation product,the cracked shell is fractured and peeled with the aluminum reacting with the detonation product. 展开更多
关键词 ALUMINUM CORE-SHELL PARTICLES STRUCTURAL response ALUMINUM COMBUSTION aluminized explosives
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部