Thermoelectric(TE)materials have been considered as a strong candidate for recovering the waste heat from industry and vehicles due to the ability to convert heat directly into electricity.Recently,multinary diamond...Thermoelectric(TE)materials have been considered as a strong candidate for recovering the waste heat from industry and vehicles due to the ability to convert heat directly into electricity.Recently,multinary diamond-like chalcogenides(MDLCs),such as Cu In Te2,Cu2Sn Se3,Cu3Sb Se4,Cu2ZnSnSe4,etc.,are eco-friendly Pb-free TE materials with relatively large Seebeck coefficient and low thermal conductivity and have aroused intensive research as a popular theme in the TE field.In this review,we summarize the TE performance and device development of MDLCs.The features of crystalline and electronic structure are first analyzed,and then the strategies that have emerged to enhance the TE figure of merits of these materials are illustrated in detail.The final part of this review describes the advance in TE device research for MDLCs.In the outlook,the challenges and future directions are also discussed to promote the further development of MDLCs TE materials.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51372064 and 61704044)the Key Project of the Natural Science Foundation of Hebei Province,China(Grant No.E2017201227)
文摘Thermoelectric(TE)materials have been considered as a strong candidate for recovering the waste heat from industry and vehicles due to the ability to convert heat directly into electricity.Recently,multinary diamond-like chalcogenides(MDLCs),such as Cu In Te2,Cu2Sn Se3,Cu3Sb Se4,Cu2ZnSnSe4,etc.,are eco-friendly Pb-free TE materials with relatively large Seebeck coefficient and low thermal conductivity and have aroused intensive research as a popular theme in the TE field.In this review,we summarize the TE performance and device development of MDLCs.The features of crystalline and electronic structure are first analyzed,and then the strategies that have emerged to enhance the TE figure of merits of these materials are illustrated in detail.The final part of this review describes the advance in TE device research for MDLCs.In the outlook,the challenges and future directions are also discussed to promote the further development of MDLCs TE materials.