The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field. This review assembles an update of the advances of using azide-alkyne click polymerization to prepare f...The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field. This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles(PTAs) with linear and hyperbranched structures.The Cu(I)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.展开更多
Azide-alkyne click polymerization has become a powerful tool for polymer synthesis.However,the click polymerization between internal alkynes and azides is rarely utilized to prepare functional polymers.In this work,th...Azide-alkyne click polymerization has become a powerful tool for polymer synthesis.However,the click polymerization between internal alkynes and azides is rarely utilized to prepare functional polymers.In this work,the polymerization reactions of activated internal alkyne monomers of tris(2-butynoate)s(1)with tetraphenylethene-containing diazides(2)were performed in dimethylformamide(DMF)under simple heating,affording four hyperbranched poly(methyltriazolylcarboxylate)s(hb-PMTCs)with high molecular weights(A4W up to 2.4 x 104)and regioregularities(up to 83.9%)in good yields.The hb-PMTCs are soluble in common organic solvents,and thermally stable with 5%weight loss temperatures up to 400℃.They are non-emissive in dilute solution,but become highly emissive in aggregated state,exhibiting aggregationinduced emission characteristics.The polymers can generate fluorescent photopatterns with high resolution,and can work as fluorescent sensors to detect nitroaromatic explosive with high sensitivity.展开更多
The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However,the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely emplo...The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However,the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely employed to construct functional polymers. Herein, the polycycloadditions of dibutynoate(1) and tetraphenylethene-containing diazides(2) were carried out at 100 °C for 12 h under solvent-and catalyst-free conditions, producing soluble poly(methyltriazolylcarboxylate)s(PMTCs) with high molecular weights in high yields. The resultant polymers were thermally stable with 5% weight loss temperatures up to 377 °C. The PMTCs showed aggregation-induced emission(AIE)properties. They could work as fluorescent sensors for detecting explosive with high sensitivity, and generate two-dimensional fluorescent photopatterns with high resolution. Furthermore, their triazolium salts could be utilized for cell-imaging applications.展开更多
基金partially supported by the National Natural Science Foundation of China(Nos.50703033,20974098 and 20974028)the Ministry of Science and Technology of China(2009CB623605)+1 种基金the Research Grants Council of Hong Kong (603509,HKUST2/CRF/10)the University Grants Committee of Hong Kong(AoE/P-03/08)
文摘The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field. This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles(PTAs) with linear and hyperbranched structures.The Cu(I)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.
基金the National Natural Science Foundation of China(Nos.21875152 and 21404077)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.17KJB150034)+3 种基金the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangzhou 510640,China(South China University of Technology)(No.2019B030301003)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD).M.N.L.and Q.Z.Z.thank the financial support from Undergraduate Training Program for Innovation and Entrepreneurship,Soochow University(No.2018xj032)H.K.L.acknowledges the supports from Jiangsu Planned Projects for Postdoctoral Research Funds(No.1501023B)China Postdoctoral Science Foundation(No.2016M591906).
文摘Azide-alkyne click polymerization has become a powerful tool for polymer synthesis.However,the click polymerization between internal alkynes and azides is rarely utilized to prepare functional polymers.In this work,the polymerization reactions of activated internal alkyne monomers of tris(2-butynoate)s(1)with tetraphenylethene-containing diazides(2)were performed in dimethylformamide(DMF)under simple heating,affording four hyperbranched poly(methyltriazolylcarboxylate)s(hb-PMTCs)with high molecular weights(A4W up to 2.4 x 104)and regioregularities(up to 83.9%)in good yields.The hb-PMTCs are soluble in common organic solvents,and thermally stable with 5%weight loss temperatures up to 400℃.They are non-emissive in dilute solution,but become highly emissive in aggregated state,exhibiting aggregationinduced emission characteristics.The polymers can generate fluorescent photopatterns with high resolution,and can work as fluorescent sensors to detect nitroaromatic explosive with high sensitivity.
基金partially supported by the National Natural Science Foundation of China (Nos. 21875152 and 21404077)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB150034)+2 种基金the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD)the financial supports from Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501023B)China Postdoctoral Science Foundation (No. 2016M591906)
文摘The copper-catalyzed and metal-free azide-alkyne click polymerizations have become efficient tools for polymer synthesis. However,the 1,3-dipolar polycycloadditions between internal alkynes and azides are rarely employed to construct functional polymers. Herein, the polycycloadditions of dibutynoate(1) and tetraphenylethene-containing diazides(2) were carried out at 100 °C for 12 h under solvent-and catalyst-free conditions, producing soluble poly(methyltriazolylcarboxylate)s(PMTCs) with high molecular weights in high yields. The resultant polymers were thermally stable with 5% weight loss temperatures up to 377 °C. The PMTCs showed aggregation-induced emission(AIE)properties. They could work as fluorescent sensors for detecting explosive with high sensitivity, and generate two-dimensional fluorescent photopatterns with high resolution. Furthermore, their triazolium salts could be utilized for cell-imaging applications.