One-dimensional(1D)topological insulators are superior for low-dissipation applications owing to the 1D character of surface states where scatterings other than prohibited backscattering are further restricted.Among t...One-dimensional(1D)topological insulators are superior for low-dissipation applications owing to the 1D character of surface states where scatterings other than prohibited backscattering are further restricted.Among the proposed candidates for 1D topological materials,TaNiTe_(5)has attracted intensive attention for its quasi-one-dimensional(quasi-1D)crystalline structure.In this study,we identify the chain-like construction and anisotropic electronic states on TaNiTe_5 surface with scanning tunneling microscopy.The electron scatterings are largely suppressed even with chromium impurities deposited on the surface and magnetic field applied normal to the surface,which endows TaNiTe_5 great potential for low-dissipation spintronic applications.展开更多
Angle-resolved photoemission spectroscopy(ARPES)is one of the most powerful experimental techniques in condensed matter physics.Synchrotron ARPES,which uses photons with high flux and continuously tunable energy,has b...Angle-resolved photoemission spectroscopy(ARPES)is one of the most powerful experimental techniques in condensed matter physics.Synchrotron ARPES,which uses photons with high flux and continuously tunable energy,has become particularly important.However,an excellent synchrotron ARPES system must have features such as a small beam spot,super-high energy resolution,and a user-friendly operation interface.A synchrotron beamline and an endstation(BL03 U)were designed and constructed at the Shanghai Synchrotron Radiation Facility.The beam spot size at the sample position is 7.5(V)μm×67(H)μm,and the fundamental photon range is 7-165 eV;the ARPES system enables photoemission with an energy resolution of 2.67 meV at21.2 eV.In addition,the ARPES system of this endstation is equipped with a six-axis cryogenic sample manipulator(the lowest temperature is 7 K)and is integrated with an oxide molecular beam epitaxy system and a scanning tunneling microscope,which can provide an advanced platform for in situ characterization of the fine electronic structure of condensed matter.展开更多
基金the National Key R&D Program of China(Grant No.2017YFA0305400)the National Natural Science Foundation of China(Grant No.11227902)。
文摘One-dimensional(1D)topological insulators are superior for low-dissipation applications owing to the 1D character of surface states where scatterings other than prohibited backscattering are further restricted.Among the proposed candidates for 1D topological materials,TaNiTe_(5)has attracted intensive attention for its quasi-one-dimensional(quasi-1D)crystalline structure.In this study,we identify the chain-like construction and anisotropic electronic states on TaNiTe_5 surface with scanning tunneling microscopy.The electron scatterings are largely suppressed even with chromium impurities deposited on the surface and magnetic field applied normal to the surface,which endows TaNiTe_5 great potential for low-dissipation spintronic applications.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(No.11227902)as part of the SiP·ME2 beamline project。
文摘Angle-resolved photoemission spectroscopy(ARPES)is one of the most powerful experimental techniques in condensed matter physics.Synchrotron ARPES,which uses photons with high flux and continuously tunable energy,has become particularly important.However,an excellent synchrotron ARPES system must have features such as a small beam spot,super-high energy resolution,and a user-friendly operation interface.A synchrotron beamline and an endstation(BL03 U)were designed and constructed at the Shanghai Synchrotron Radiation Facility.The beam spot size at the sample position is 7.5(V)μm×67(H)μm,and the fundamental photon range is 7-165 eV;the ARPES system enables photoemission with an energy resolution of 2.67 meV at21.2 eV.In addition,the ARPES system of this endstation is equipped with a six-axis cryogenic sample manipulator(the lowest temperature is 7 K)and is integrated with an oxide molecular beam epitaxy system and a scanning tunneling microscope,which can provide an advanced platform for in situ characterization of the fine electronic structure of condensed matter.