Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanic...Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanical properties of elas- tic beams by using the Timoshenko beam model. Particular attention is paid to the transverse bending and axial buckling of a pre-twisted rectangular beam. The analytical solution is first derived for the deflection of a clamped-free beam under a uniformly or periodically distributed transverse force. The critical buckling condition of the beam subjected to its self- weight and an axial compressive force is further solved. The results show that the twisting morphology can significantly improve the resistance of beams to both transverse bending and axial buckling. This study helps understand some phenomena associated with twisting chirality in nature and provides inspirations for the design of novel devices and structures.展开更多
基金supported by the National Natural Science Foundation of China(31270989 and 11372162)the 973 Program of MOST(2010CB631005 and 2012CB934001)Tsinghua University(20121087991)
文摘Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanical properties of elas- tic beams by using the Timoshenko beam model. Particular attention is paid to the transverse bending and axial buckling of a pre-twisted rectangular beam. The analytical solution is first derived for the deflection of a clamped-free beam under a uniformly or periodically distributed transverse force. The critical buckling condition of the beam subjected to its self- weight and an axial compressive force is further solved. The results show that the twisting morphology can significantly improve the resistance of beams to both transverse bending and axial buckling. This study helps understand some phenomena associated with twisting chirality in nature and provides inspirations for the design of novel devices and structures.