期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
PIFs interact with SWI2/SNF2-related 1 complex subunit 6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis
1
作者 Huiru Chen Wanting Wang +9 位作者 Xiao Chen Yake Niu Yuanyuan Qi Ze Yu Minyu Xiong Pengbo Xu Wenxiu Wang Tongtong Guo hong-quan yang Zhilei Mao 《Journal of Genetics and Genomics》 SCIE CSCD 2023年第12期983-992,共10页
Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to t... Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light. 展开更多
关键词 Phytochrome-interacting factors PHOTOMORPHOGENESIS H2A.Z SWC6 Auxin-responsive genes ARABIDOPSIS
原文传递
MicroRNA171c-Targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ Genes Regulate Shoot Branching in Arabidopsis 被引量:38
2
作者 Long Wang Yan-Xia Mai +2 位作者 Yan-Chun Zhang Qian Luo hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2010年第5期794-806,共13页
MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot... MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-Ⅱ (SCL6-Ⅱ), SCL6-Ⅲ, and SCL6-Ⅳ for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and sd6-Ⅱ scl6-Ⅲ scl6-Ⅳ triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ in 35Spro- MIR171c plants rescues the reduced shoot branching phenotype. Scl6-Ⅱ scl6-Ⅲ scl6-Ⅳ mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ play an important role in the regulation of shoot branch production. 展开更多
关键词 Arabidopsis thaliana axillary meristem miRNA171 SCL6 shoot branching.
原文传递
Red-Light-Dependent Interaction of phyB with SPA1 Promotes COP1-SPA1 Dissociation and Photomorphogenic Development in Arabidopsis 被引量:26
3
作者 Xue-Dan Lu Chuan-Miao Zhou +3 位作者 Peng-Bo Xu Qian Luo Hong-Li Lian hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2015年第3期467-478,共12页
Arabidopsis phytochromes (phyA-phyE) are photoreceptors dedicated to sensing red/far-red light. Phyto- chromes promote photomorphogenic developments upon light irradiation via a signaling pathway that involves rapid... Arabidopsis phytochromes (phyA-phyE) are photoreceptors dedicated to sensing red/far-red light. Phyto- chromes promote photomorphogenic developments upon light irradiation via a signaling pathway that involves rapid degradation of PIFs (PHYTOCHROME INTERACTING FACTORS) and suppression of COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) nuclear accumulation, through physical interactions with PIFs and COP1, respectively. Both phyA and phyB, the two best characterized phytochromes, regulate plant photomorphogenesis predominantly under far-red light and red light, respectively. It has been demonstrated that SPA1 (SUPPRESSOR OF PHYTOCHROME A 1) associates with COP1 to promote COP1 activity and suppress photomorphogenesis. Here, we report that the mechanism underlying phyB- promoted photomorphogenesis in red light involves direct physical and functional interactions between red-light-activated phyB and SPA1. We found that SPA1 acts genetically downstream of PHYB to repress photomorphogenesis in red light. Protein interaction studies in both yeast and Arabidopsis demonstrated that the photoactivated phyB represses the association of SPA1 with COP1, which is mediated, at least in part, through red-light-dependent interaction of phyB with SPA1. Moreover, we show that phyA physically interacts with SPA1 in a Pfr-form-dependent manner, and that SPA1 acts downstream of PHYA to regulate photomorphogenesis in far-red light. This study provides a genetic and biochemical model of how photo- activated phyB represses the activity of COP1-SPA1 complex through direct interaction with SPA1 to promote photomorphogenesis in red light. 展开更多
关键词 PHYB PHOTOACTIVATION SPA1 COP1 PHOTOMORPHOGENESIS PHYA
原文传递
Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis 被引量:26
4
作者 Feng Xu Shengbo He +9 位作者 Jingyi Zhang Zhilei Mao Wenxiu Wang Ting Li Jie Hua Shasha Du Pengbo Xu Ling Li Hongli Lian hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2018年第4期523-541,共19页
Light is a key environmental cue that inhibits hypocotyl cell elongation through the blue and red/far-red light photoreceptors cryptochrome- and phytochrome-mediated pathways in Arabidopsis. In contrast, as a pivotal ... Light is a key environmental cue that inhibits hypocotyl cell elongation through the blue and red/far-red light photoreceptors cryptochrome- and phytochrome-mediated pathways in Arabidopsis. In contrast, as a pivotal endogenous phytohormone auxin promotes hypocotyl elongation through the auxin receptors TIR1/AFBs-mediated degradation of AUX/IAA proteins (AUX/IAAs). However, the molecular mechanisms underlying the antagonistic interaction of light and auxin signaling remain unclear. Here, we report that light inhibits auxin signaling through stabilization of AUX/IAAs byblue and red light-dependent interactions of cryptochrome 1 (CRY1) and phytochrome B with AUX/IAAs, respectively. Blue light-triggered interactions of CRY1 with AUX/IAAs inhibit the associations of TIR1 with AUX/IAAs, leading to the repression of auxin- induced degradation of these proteins. Our results indicate that photoreceptors share AUX/IAAs with auxin receptors as the same direct downstream signaling components. We propose that antagonistic regulation of AUX/IAA protein stability by photoreceptors and auxin receptors allows plants to balance light and auxin signals to optimize their growth. 展开更多
关键词 ARABIDOPSIS light auxin CRYPTOCHROME PHYTOCHROME AUX/IAA proteins
原文传递
Phytochrome B Is Involved in Mediating Red Light-Induced Stomatal Opening in Arabidopsis thaliana 被引量:27
5
作者 Fang-Fang Wang Hong-Li Lian +1 位作者 Chun-Ying Kang hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2010年第1期246-259,共14页
The stomatal pores of higher plants enable gaseous exchange into and out of leaves for photosynthesis and evaporation. Stomatal opening is induced by both blue and red lights. It is shown that blue light-induced stoma... The stomatal pores of higher plants enable gaseous exchange into and out of leaves for photosynthesis and evaporation. Stomatal opening is induced by both blue and red lights. It is shown that blue light-induced stomatal opening is mediated by the blue light receptor phototropins (PHOT1 and PHOT2) and cryptochromes (CRY1 and CRY2). However, whether phytochrome B (phyB) is involved in red light regulation of stomatal opening remains largely unclear. Here, we report a positive role for Arabidopsis (Arabidopsis thaliana) phyB in the regulation of red light-induced stomatal opening. The phyB mutant stomata displayed a reduced red light response, whereas stomata of the phyB-overexpressing plants displayed a hypersensitive response to red light. In addition, stomata of the cry1 cry2 phyB, photl phot2 phyB, and cry1 phyA phyB triple mutant plants showed more reduced light response than those of the single or double mutant plants under white light, implying that phyB acts in concert with phyA, CRY, and PHOT in light regulation of stomatal opening. Stomata of phyB cop1 mutant opened less wide than those of the cop1 mutant, and stomata of the pif3 pif4 mutant opened wider than those of the wild-type, indicating that COP1, together with the PIFs (phytochrome interacting factors), may act downstream of PHYB in regulating stomatal opening. Furthermore, quantitative RT-PCR analysis showed that the expression of MYB60 was reduced in the cry1 cry2 and phyA phyB mutants under blue and red lights, respectively, but induced in the CRY1- and phyB-overexpressing plants. These results demonstrate that phyB and CRY might regulate stomatal opening, at least in part, by regulating MYB60 expression. 展开更多
关键词 ARABIDOPSIS PHYB stomatal opening red light.
原文传递
Strigolactone-Regulated Hypocotyl Elongation Is Dependent on Cryptochrome and Phytochrome Signaling Pathways in Arabidopsis 被引量:12
6
作者 Kun-Peng Jia Qian Luo +2 位作者 Sheng-Bo He Xue-Dan Lu hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2014年第3期528-540,共13页
Seedling development including hypocotyl elongation is a critical phase in the plant life cycle. Light regula- tion of hypocotyl elongation is primarily mediated through the blue light photoreceptor cryptochrome and r... Seedling development including hypocotyl elongation is a critical phase in the plant life cycle. Light regula- tion of hypocotyl elongation is primarily mediated through the blue light photoreceptor cryptochrome and red/far-red light photoreceptor phytochrome signaling pathways, comprising regulators including COP1, HY5, and phytochrome- interacting factors (PIFs). The novel phytohormones, strigolactones, also participate in regulating hypocotyl growth. However, how strigolactone coordinates with light and photoreceptors in the regulation of hypocotyl elongation is largely unclear. Here, we demonstrate that strigolactone inhibition of hypocotyl elongation is dependent on cryp- tochrome and phytochrome signaling pathways. The photoreceptor mutants cry1 cry2, phyA, and phyB are hyposensi- tive to strigolactone analog GR24 under the respective monochromatic light conditions, while cop1 and pifl pif3 pif4 pif5 (pifq) quadruple mutants are hypersensitive to GR24 in darkness. Genetic studies indicate that the enhanced respon- siveness of cop1 to GR24 is dependent on HY5 and MAX2, while that of pifq is independent of HY5. Further studies demonstrate that GR24 constitutively up-regulates HY5 expression in the dark and light, whereas GR24-promoted HY5 protein accumulation is light- and cryptochrome and phytochrome photoreceptor-dependent. These results suggest that the light dependency of strigolactone regulation of hypocotyl elongation is likely mediated through MAX2-dependent promotion of HY5 expression, light-dependent accumulation of HY5, and PIF-regulated components. 展开更多
关键词 hypocotyl elongation CRYPTOCHROME PHYTOCHROME STRIGOLACTONES COP1 HY5 PIF MAX2.
原文传递
CRYPTOCHROME 1 Is Implicated in Promoting R Protein-Mediated Plant Resistance to Pseudomonas syringae in Arabiclopsis 被引量:18
7
作者 Liang Wu hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2010年第3期539-548,共10页
Plants have evolved complex mechanisms to defend themselves against pathogens. It has been shown that several defense responses are influenced by light, and the red/far-red light photoreceptor phytochromes (PHY) mod... Plants have evolved complex mechanisms to defend themselves against pathogens. It has been shown that several defense responses are influenced by light, and the red/far-red light photoreceptor phytochromes (PHY) modulate plant defense responses in Arabidopsis. Blue light receptor cryptochromes (CRY) work together with PHY to regulate many light-controlled responses, including photomorphogenesis, floral induction, and entrainment of the circadian clock. We report here that the Arabidopsis blue light photoreceptor CRY1 positively regulates inducible resistance to Pseudomonas syringae under continuous light conditions. By challenging plants with R syringae pv. tomato (Pst.) DC3000 carrying avrRpt2, we demonstrate that effector-triggered local resistance is down-regulated in the cry1 mutant, leading to more pathogen multiplication. In plants overexpressing CRY1 (CRYl-ovx), however, local resistance is significantly up-regulated. We also show that systemic acquired resistance (SAR) is positively regulated by CRY1, and that salicylic acid (SA)-induced pathogenesis-related gene PR-1 expression is reduced in the cry1 mutant, but enhanced in CRYl-ovx plants. However, our results in- dicate that CRY1 only modestly influences SA accumulation and has no effect on hypersensitive cell death. These results suggest that CRY1 may positively regulate R protein-mediated resistance to P. syringae with increased PR gene expression. 展开更多
关键词 ARABIDOPSIS CRYPTOCHROME plant resistance salicylic acid pathogenesis-related (PR) gene.
原文传递
A Gain-of-Function Mutation in IAA7/AXR2 Confers Late Flowering under Short-day Light in Arabidopsis 被引量:14
8
作者 Yan-Xia Mai Long Wang hong-quan yang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2011年第6期480-492,共13页
Floral initiation is a major step in the life cycle of plants, which is influenced by photoperiod, temperature, and phytohormones, such as gibberellins (GAs). It is known that GAs promote floral initiation under sho... Floral initiation is a major step in the life cycle of plants, which is influenced by photoperiod, temperature, and phytohormones, such as gibberellins (GAs). It is known that GAs promote floral initiation under short-day light conditions (SDs) by regulating the floral meristem-identity gene LEAFY (LFY) and the flowering-time gene SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1). We have defined the role of the auxin signaling component INDOLE-3-ACETIC ACID 7 (IAA7)/AUXIN RESISTANT 2 (AXR2) in the regulation of flowering time in Arabidopsis thaliana. We demonstrate that the gain-of-function mutant of IAA7/AXR2, axr2-1, flowers late under SDs. The exogenous application of GAs rescued the late flowering phenotype of axr2-1 plants. The expression of the GA20 oxidase (GA2Oox) genes, GA2Ooxl and GA2Oox2, was reduced in axr2-1 plants, and the levels of both LFY and SOC1 transcripts were reduced in axr2-1 mutants under SDs. Furthermore, the overexpression of SOC1 or LFY in axr2-1 mutants rescued the late flowering phenotype under SDs. Our results suggest that IAA7/AXR2 might act to inhibit the timing of floral transition under SDs, at least in part, by negatively regulating the expressions of the GA2Ooxl and GA2Oox2 genes. 展开更多
关键词 ARABIDOPSIS GA 20-oxidases GAs IAA7/AXR2 auxin.
原文传递
Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein 13 Subunit AGB1 to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in Arabidopsis 被引量:13
9
作者 Hongli Lian Pengbo Xu +8 位作者 Shengbo He Jun Wu Jian Pan Wenxiu Wang Feng Xu Sheng Wang Junsong Pan Jirong Huang hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2018年第10期1248-1263,共16页
Light and the heterotrimeric G-protein are known to antagonistically regulate photomorphogenesis in Arabidopsis. However, whether light and G-protein coordinate the regulation of photomorphogenesis is largely unknown.... Light and the heterotrimeric G-protein are known to antagonistically regulate photomorphogenesis in Arabidopsis. However, whether light and G-protein coordinate the regulation of photomorphogenesis is largely unknown. Here we show that the blue light photoreceptor cryptochrome 1 (CRY1) physically inter-acts with the G-protein β subunit, AGB1, in a blue light-dependent manner. We also show that AGB1 directly interacts with HY5, a basic leucine zipper transcriptional factor that acts as a critical positive regulator of photomorphogenesis, to inhibit its DNA-binding activity. Genetic studies suggest that CRY1 acts partially through AGB1, and AGB1 acts partially through HY5 to regulate photomorphogenesis. Moreover, we demonstrate that blue light-triggered interaction of CRY1 with AGB1 promotes the dissociation of HY5 from AGB1. Our results suggest that the CRY1 signaling mechanism involves positive regulation of the DNA-binding activity of HY5 mediated by the CRY1-AGB1 interaction, which inhibits the association of AGB1 with HY5. We propose that the antagonistic regulation of HY5 DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize photomorphogenesis. 展开更多
关键词 ARABIDOPSIS CRYPTOCHROME heterotrimeric G-protein β subunit AGB1 HY5 PHOTOMORPHOGENESIS
原文传递
Phytochrome B and AGB1 Coordinately Regulate Photomorphogenesis by Antagonistically Modulating PIF3 Stability in Arabidopsis 被引量:6
10
作者 Pengbo Xu Hongli Lian +6 位作者 Feng Xu Ting Zhang Sheng Wang Wenxiu Wang Shasha Du Jirong Huang hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2019年第2期229-247,共19页
Phytochrome B (phyB), the primary red light photoreceptor, promotes photomorphogenesis in Arabidopsis by interacting with the basic helix-loop-helix transcriptional factor PIF3 and inducing its phosphorylation and deg... Phytochrome B (phyB), the primary red light photoreceptor, promotes photomorphogenesis in Arabidopsis by interacting with the basic helix-loop-helix transcriptional factor PIF3 and inducing its phosphorylation and degradation. Heterotrimeric G proteins are known to regulate various developmental processes in plants and animals. In Arabidopsis, the G-protein β subunit AGB1 is known to repress photomorphogenesis. However, whether and how phyB and AGB1 coordinately regulate photomorphogenesis are largely unknown. Here we show that phyB physically interacts with AGB1 in a red light-dependent manner and that AGB1 interacts directly with PIF3. Moreover, we demonstrate that the AGB1-PIF3 interaction inhibits the association of PIF3 with phyB, leading to reduced phosphorylation and degradation of PIF3, whereas the phyB-AGB1 interaction represses the association of PIF3 with AGB1, resulting in enhaneed phosphorylation and degradation of PIF3. Our results suggest that phyB and AGB1 antagonistically regulate PIF3 stability by dynamically interacting with each other and PIF3. This dynamic mechanism may allow plants to balanee phyB and G-protein signaling to optimize photomorphogenesis. 展开更多
关键词 ARABIDOPSIS PHYTOCHROME B heterotrimeric G-PROTEIN β sub unit AGB1 PIF3 PHOTOMORPHOGENESIS protein STABILITY
原文传递
Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogensis in Arabidopsis 被引量:7
11
作者 Xuxu Wei Wanting Wang +7 位作者 Peng Xu Wenxiu Wang Tongtong Guo Shuang Kou Minqing Liu Yake Niu hong-quan yang Zhilei Mao 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第6期1133-1146,共14页
Light serves as a crucial environmental cue which modulates plant growth and development, and which is controlled by multiple photoreceptors including the primary red light photoreceptor,phytochrome B(phyB). The signa... Light serves as a crucial environmental cue which modulates plant growth and development, and which is controlled by multiple photoreceptors including the primary red light photoreceptor,phytochrome B(phyB). The signaling mechanism of phyB involves direct interactions with a group of basic helix-loop-helix(bHLH) transcription factors, PHYTOCHROME-INTERACTING FACTORS(PIFs), and the negative regulators of photomorphogenesis, COP1 and SPAs. H2 A.Z is an evolutionarily conserved H2 A variant which plays essential roles in transcriptional regulation. The replacement of H2 A with H2 A.Z is catalyzed by the SWR1 complex. Here, we show that the Pfr form of phyB physically interacts with the SWR1 complex subunits SWC6 and ARP6. phyB and ARP6 coregulate numerous genes in the same direction,some of which are associated with auxin biosynthesis and response including YUC9, which encodes a rate-limiting enzyme in the tryptophandependent auxin biosynthesis pathway. Moreover,phyB and HY5/HYH act to inhibit hypocotyl elongation partially through repression of auxin biosynthesis. Based on our findings and previous studies, we propose that phyB promotes H2 A.Z deposition at YUC9 to inhibit its expression through direct phyB-SWC6/ARP6 interactions,leading to repression of auxin biosynthesis, and thus inhibition of hypocotyl elongation in red light. 展开更多
关键词 ARP6 H2A.Z hypocotyl elongation PHOTOMORPHOGENESIS phytochrome B red light SWC6
原文传递
Substitution of a Conserved Glycine in the PHR Domain of Arabidopsis CRYPTOCHROME 1 Confers a Constitutive Light Response 被引量:3
12
作者 Nan-Nan Gu Yan-Chun Zhang hong-quan yang 《Molecular Plant》 SCIE CAS CSCD 2012年第1期85-97,共13页
CRYPTOCHROMES (CRYs) are photolyase-like ultraviolet-A/blue light photoreceptors that mediate various light responses in plants. The signaling mechanism of Arabidopsis CRYs (CRY1 and CRY2) involves direct CRY-COP1... CRYPTOCHROMES (CRYs) are photolyase-like ultraviolet-A/blue light photoreceptors that mediate various light responses in plants. The signaling mechanism of Arabidopsis CRYs (CRY1 and CRY2) involves direct CRY-COP1 interaction. Here, we report that CRY1G380R, which carries a Gly-to-Arg substitution of the highly conserved G380 in the photo-lyase-related (PHR) domain of Arabidopsis CRY1, shows constitutive CRY1 photoreceptor activity in Arabidopsis. Transgenic plants overexpressing CRY1G380R display a constitutively photomorphogenic (COP) phenotype in darkness, as well as a dramatic early flowering phenotype under short-day light conditions (SD). We further demonstrate that CRY1G380R expression driven by the native CRY1 promoter also results in a COP phenotype in darkness. Moreover, over- expression of either the Arabidopsis homolog CRY2G377R or the rice ortholog OsCRYlbG388R of CRY1G380R in Arabidopsis results in a COP phenotype in darkness. Cellular localization studies indicate that CRY1G380R co-localizes with COP1 in the same nuclear bodies (NBs) in vivo and inhibits the nuclear accumulation of COP1 in darkness. These results suggest that the conserved G380 may play a critical role in regulating the photoreceptor activity of plant CRYs and that CRY1G380R might constitutively phenocopy the photo-activated CRY1 in darkness and thus constitutively mediate CRY1 signaling. 展开更多
关键词 ARABIDOPSIS CRY1 CRy1G380R COP phenotype COP1.
原文传递
The involvement of the N-terminal PHR domain of Arabidopsis cryptochromes in mediating light signaling 被引量:1
13
作者 Wenxiu Wang Zhilei Mao +2 位作者 Tongtong Guo Shuang Kou hong-quan yang 《aBIOTECH》 CSCD 2021年第2期146-155,共10页
Light is a key environmental cue that fundamentally regulates all aspects of plant growth and development,which is mediated by the multiple photoreceptors including the blue light photoreceptors cryptochromes(CRYs).In... Light is a key environmental cue that fundamentally regulates all aspects of plant growth and development,which is mediated by the multiple photoreceptors including the blue light photoreceptors cryptochromes(CRYs).In Arabidopsis,there are two well-characterized homologous CRYs,CRY1 and CRY2.Whereas CRYs are flavoproteins,they lack photolyase activity and are characterized by an Nterminal photolyase-homologous region(PHR)domain and a C-terminal extension domain.It has been established that the C-terminal extension domain of CRYs is involved in mediating light signaling through direct interactions with the master negative regulator of photomorphogenesis,COP1.Recent studies have revealed that the N-terminal PHR domain of CRYs is also involved in mediating light signaling.In this review,we mainly summarize and discuss the recent advances in CRYs signaling mediated by the N-terminal PHR domain,which involves the N-terminal PHR domain-mediated dimerization/oligomerization of CRYs and physical interactions with the pivotal transcription regulators in light and phytohormone signaling. 展开更多
关键词 Light signaling CRYPTOCHROMES PHOTOMORPHOGENESIS Phytohormone signaling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部