Titanium dioxide is considered to be promising anode for sodium-ion batteries due to stable structure during the charge/discharge process.However,its practical application is hindered by the slow electron/ion transpor...Titanium dioxide is considered to be promising anode for sodium-ion batteries due to stable structure during the charge/discharge process.However,its practical application is hindered by the slow electron/ion transport.Herein,phosphorus-doped anatase TiO_(2) nanoparticles with oxygen vacancies are successfully synthesized and utilized as high-performance sodium-storage materials.The dual strategy of phosphorus-doping and oxygen vacancies can concurrently boost electronic conductivity and adjust ion diffusion kinetics.They significantly contribute to the improved rate performance(167 mAh·g^(-1) at 20.0C)and stable cycling(95.9%after 2000 cycles at 20.0C).The proposed dual strategy can be potentially used to improve other oxide anodes for rechargeable batteries.展开更多
基金the National Natural Science Foundation of China(Nos.91961126 and 22078029)Zhejiang Provincial Natural Science Foundation(No.LR21E020003)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_1180)Jiangsu Development&Reform Commission and Changzhou Development&Reform Commission for their support。
文摘Titanium dioxide is considered to be promising anode for sodium-ion batteries due to stable structure during the charge/discharge process.However,its practical application is hindered by the slow electron/ion transport.Herein,phosphorus-doped anatase TiO_(2) nanoparticles with oxygen vacancies are successfully synthesized and utilized as high-performance sodium-storage materials.The dual strategy of phosphorus-doping and oxygen vacancies can concurrently boost electronic conductivity and adjust ion diffusion kinetics.They significantly contribute to the improved rate performance(167 mAh·g^(-1) at 20.0C)and stable cycling(95.9%after 2000 cycles at 20.0C).The proposed dual strategy can be potentially used to improve other oxide anodes for rechargeable batteries.