The positive definiteness of real quadratic forms with convolution structures plays an important rolein stability analysis for time-stepping schemes for nonlocal operators. In this work, we present a novel analysistoo...The positive definiteness of real quadratic forms with convolution structures plays an important rolein stability analysis for time-stepping schemes for nonlocal operators. In this work, we present a novel analysistool to handle discrete convolution kernels resulting from variable-step approximations for convolution operators.More precisely, for a class of discrete convolution kernels relevant to variable-step L1-type time discretizations, weshow that the associated quadratic form is positive definite under some easy-to-check algebraic conditions. Ourproof is based on an elementary constructing strategy by using the properties of discrete orthogonal convolutionkernels and discrete complementary convolution kernels. To our knowledge, this is the first general result onsimple algebraic conditions for the positive definiteness of variable-step discrete convolution kernels. Using theunified theory, we obtain the stability for some simple nonuniform time-stepping schemes straightforwardly.展开更多
This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is li...This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.展开更多
In this work,we are concerned with the stability and convergence analysis of the second-order backward difference formula(BDF2)with variable steps for the molecular beam epitaxial model without slope selection.We firs...In this work,we are concerned with the stability and convergence analysis of the second-order backward difference formula(BDF2)with variable steps for the molecular beam epitaxial model without slope selection.We first show that the variable-step BDF2 scheme is convex and uniquely solvable under a weak time-step constraint.Then we show that it preserves an energy dissipation law if the adjacent time-step ratios satisfy r_(k):=τ_(k)/τ_(k-1)<3.561.Moreover,with a novel discrete orthogonal convolution kernels argument and some new estimates on the corresponding positive definite quadratic forms,the L^(2)norm stability and rigorous error estimates are established,under the same step-ratio constraint that ensures the energy stability,i.e.,0<r_(k)<3.561.This is known to be the best result in the literature.We finally adopt an adaptive time-stepping strategy to accelerate the computations of the steady state solution and confirm our theoretical findings by numerical examples.展开更多
This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linea...This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linear diffusion equations,see,e.g.,[SIAM J.Numer.Anal.,58:2294-2314]and[Math.Comp.,90:1207-1226]for our previous works on the BDF2 scheme.To this aim,we first build up a discrete gradient structure of the variable-step BDF3 formula under the condition that the adjacent step ratios are less than 1.4877,by which we can establish a discrete energy dissipation law.Mesh-robust stability and convergence analysis in the L^(2) norm are then obtained.Here the mesh robustness means that the solution errors are well controlled by the maximum time-step size but independent of the adjacent time-step ratios.We also present numerical tests to support our theoretical results.展开更多
In this work,we revisit the adaptive L1 time-stepping scheme for solving the time-fractional Allen-Cahn equation in the Caputo’s form.The L1 implicit scheme is shown to preserve a variational energy dissipation law o...In this work,we revisit the adaptive L1 time-stepping scheme for solving the time-fractional Allen-Cahn equation in the Caputo’s form.The L1 implicit scheme is shown to preserve a variational energy dissipation law on arbitrary nonuniform time meshes by using the recent discrete analysis tools,i.e.,the discrete orthogonal convolution kernels and discrete complementary convolution kernels.Then the discrete embedding techniques and the fractional Gronwall inequality are applied to establish an L^(2)norm error estimate on nonuniform time meshes.An adaptive time-stepping strategy according to the dynamical feature of the system is presented to capture the multi-scale behaviors and to improve the computational performance.展开更多
As a promising strategy to adjust the order in the variable-order BDF algorithm,a time filtered backward Euler scheme is investigated for the molecular beam epitaxial equation with slope selection.The temporal second-...As a promising strategy to adjust the order in the variable-order BDF algorithm,a time filtered backward Euler scheme is investigated for the molecular beam epitaxial equation with slope selection.The temporal second-order convergence in the L^(2)norm is established under a convergence-solvability-stability(CSS)-consistent time-step constraint.The CSS-consistent condition means that the maximum stepsize limit required for convergence is of the same order to that for solvability and stability(in certain norms)as the small interface parameterε→0^(+).Similar to the backward Euler scheme,the time filtered backward Euler scheme preserves some physical properties of the original problem at the discrete levels,including the volume conservation,the energy dissipation law and L^(2)norm boundedness.Numerical tests are included to support the theoretical results.展开更多
基金Hong-Lin Liao was supported by National Natural Science Foundation of China(Grant No.12071216)Tao Tang was supported by Science Challenge Project(Grant No.TZ2018001)+3 种基金National Natural Science Foundation of China(Grants Nos.11731006 and K20911001)Tao Zhou was supported by National Natural Science Foundation of China(Grant No.12288201)Youth Innovation Promotion Association(CAS)Henan Academy of Sciences.
文摘The positive definiteness of real quadratic forms with convolution structures plays an important rolein stability analysis for time-stepping schemes for nonlocal operators. In this work, we present a novel analysistool to handle discrete convolution kernels resulting from variable-step approximations for convolution operators.More precisely, for a class of discrete convolution kernels relevant to variable-step L1-type time discretizations, weshow that the associated quadratic form is positive definite under some easy-to-check algebraic conditions. Ourproof is based on an elementary constructing strategy by using the properties of discrete orthogonal convolutionkernels and discrete complementary convolution kernels. To our knowledge, this is the first general result onsimple algebraic conditions for the positive definiteness of variable-step discrete convolution kernels. Using theunified theory, we obtain the stability for some simple nonuniform time-stepping schemes straightforwardly.
基金This work is supported by NSFC(Grant Nos.11771035,11771162,11571128,61473126,91430216,91530204,11372354 and U1530401),a grant from the RGC of HK 11300517,China(Project No.CityU 11302915),China Postdoctoral Science Foundation under grant No.2016M602273,a grant DRA2015518 from 333 High-level Personal Training Project of Jiangsu Province,and the USA National Science Foundation grant DMS-1315259the USA Air Force Office of Scientific Research grant FA9550-15-1-0001.Jiwei Zhang also thanks the hospitality of Hong Kong City University during the period of his visiting.
文摘This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.
基金supported by National Natural Science Foundation of China(Grant No.12071216)supported by National Natural Science Foundation of China(Grant No.11731006)+2 种基金the NNW2018-ZT4A06 projectsupported by National Natural Science Foundation of China(Grant Nos.11822111,11688101 and 11731006)the Science Challenge Project(Grant No.TZ2018001)。
文摘In this work,we are concerned with the stability and convergence analysis of the second-order backward difference formula(BDF2)with variable steps for the molecular beam epitaxial model without slope selection.We first show that the variable-step BDF2 scheme is convex and uniquely solvable under a weak time-step constraint.Then we show that it preserves an energy dissipation law if the adjacent time-step ratios satisfy r_(k):=τ_(k)/τ_(k-1)<3.561.Moreover,with a novel discrete orthogonal convolution kernels argument and some new estimates on the corresponding positive definite quadratic forms,the L^(2)norm stability and rigorous error estimates are established,under the same step-ratio constraint that ensures the energy stability,i.e.,0<r_(k)<3.561.This is known to be the best result in the literature.We finally adopt an adaptive time-stepping strategy to accelerate the computations of the steady state solution and confirm our theoretical findings by numerical examples.
基金supported by NSF of China under grant number 12071216supported by NNW2018-ZT4A06 project+1 种基金supported by NSF of China under grant numbers 12288201youth innovation promotion association(CAS).
文摘This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linear diffusion equations,see,e.g.,[SIAM J.Numer.Anal.,58:2294-2314]and[Math.Comp.,90:1207-1226]for our previous works on the BDF2 scheme.To this aim,we first build up a discrete gradient structure of the variable-step BDF3 formula under the condition that the adjacent step ratios are less than 1.4877,by which we can establish a discrete energy dissipation law.Mesh-robust stability and convergence analysis in the L^(2) norm are then obtained.Here the mesh robustness means that the solution errors are well controlled by the maximum time-step size but independent of the adjacent time-step ratios.We also present numerical tests to support our theoretical results.
基金The authors would like to thank Dr.Bingquan Ji for his help on numerical computations.H.-L.Liao is supported by the National Natural Science Foundation of China(Grant 12071216)J.Wang is supported by the Hunan Provincial Innovation Foundation for Postgraduate(Grant XDCX2020B078).
文摘In this work,we revisit the adaptive L1 time-stepping scheme for solving the time-fractional Allen-Cahn equation in the Caputo’s form.The L1 implicit scheme is shown to preserve a variational energy dissipation law on arbitrary nonuniform time meshes by using the recent discrete analysis tools,i.e.,the discrete orthogonal convolution kernels and discrete complementary convolution kernels.Then the discrete embedding techniques and the fractional Gronwall inequality are applied to establish an L^(2)norm error estimate on nonuniform time meshes.An adaptive time-stepping strategy according to the dynamical feature of the system is presented to capture the multi-scale behaviors and to improve the computational performance.
基金The work of H.-L.Liao is supported by NSF of China(Grant No.12071216)。
文摘As a promising strategy to adjust the order in the variable-order BDF algorithm,a time filtered backward Euler scheme is investigated for the molecular beam epitaxial equation with slope selection.The temporal second-order convergence in the L^(2)norm is established under a convergence-solvability-stability(CSS)-consistent time-step constraint.The CSS-consistent condition means that the maximum stepsize limit required for convergence is of the same order to that for solvability and stability(in certain norms)as the small interface parameterε→0^(+).Similar to the backward Euler scheme,the time filtered backward Euler scheme preserves some physical properties of the original problem at the discrete levels,including the volume conservation,the energy dissipation law and L^(2)norm boundedness.Numerical tests are included to support the theoretical results.