A grating interferometer, called the "optical encoder," is a commonly used tool for precise displacement measurements. In contrast to a laser interferometer, a grating interferometer is insensitive to the ai...A grating interferometer, called the "optical encoder," is a commonly used tool for precise displacement measurements. In contrast to a laser interferometer, a grating interferometer is insensitive to the air refractive index and can be easily applied to multi-degree-of-freedom measurements, which has made it an extensively researched and widely used device. Classified based on the measuring principle and optical configuration, a grating interferometer experiences three distinct stages of development: homodyne, heterodyne, and spatially separated heterodyne. Compared with the former two, the spatially separated heterodyne grating interferometer could achieve a better resolution with a feature of eliminating periodic nonlinear errors. Meanwhile, numerous structures of grating interferometers with a high optical fold factor, a large measurement range, good usability, and multidegree-of-freedom measurements have been investigated. The development of incremental displacement measuring grating interferometers achieved in recent years is summarized in detail, and studies on error analysis of a grating interferometer are briefly introduced.展开更多
基金the National Natural Science Foundation of China (Nos. 51605120, 5167513& and 61675058)the National Science and Technology Major Project, China (No. 2017ZX02101006-005).
文摘A grating interferometer, called the "optical encoder," is a commonly used tool for precise displacement measurements. In contrast to a laser interferometer, a grating interferometer is insensitive to the air refractive index and can be easily applied to multi-degree-of-freedom measurements, which has made it an extensively researched and widely used device. Classified based on the measuring principle and optical configuration, a grating interferometer experiences three distinct stages of development: homodyne, heterodyne, and spatially separated heterodyne. Compared with the former two, the spatially separated heterodyne grating interferometer could achieve a better resolution with a feature of eliminating periodic nonlinear errors. Meanwhile, numerous structures of grating interferometers with a high optical fold factor, a large measurement range, good usability, and multidegree-of-freedom measurements have been investigated. The development of incremental displacement measuring grating interferometers achieved in recent years is summarized in detail, and studies on error analysis of a grating interferometer are briefly introduced.