期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparative study of different membranes as separators for rechargeable lithium-ion batteries 被引量:4
1
作者 hong-yan guan Fang Lian +3 位作者 Yan Ren Yan Wen Xiao-rong Pan Jia-lin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期598-603,共6页
Membranes of polypropylene (PP), PP coated with nano-A1203, PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/P... Membranes of polypropylene (PP), PP coated with nano-A1203, PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/PP) were comparatively studied. Their physical properties were characterized by means of thermal shrinkage test, liquid electrolyte uptake, and field emission scanning electron microscopy (FESEM). Results show that, for the different membranes as PP, PP coated with nanowA1203, PP electrospun with PVdF-HFP, and PP/PE/PP, the thermal shrinkages are 14%, 6%, 12.6%, and 13.3%, while the liquid electrolyte uptakes are 110%, 150%, 217%, and 129%, respectively. In addition, the effects on the performance of lithium-ion batteries (LiFePO4 and LiNil/3Col/3Mn1/302 as the cathode material) were investigated by AC impedance and galvanostatic charge/discharge test. It is found that PP coated with A1203 and PP electrospun with PVdF-HFP can effectively increase the wettability between the cathode material and liquid electrolyte, and therefore reduce the charge transfer resistance, which improves the capacity retention and battery performance. 展开更多
关键词 lithium-ion batteries membranes SEPARATORS thermal stability electrochemical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部