In this work, a cellular automaton model has been developed to simulate the microstructure evolution of U-Nb alloy during the solidification process. The preferential growth orientation, solute redistribution in both ...In this work, a cellular automaton model has been developed to simulate the microstructure evolution of U-Nb alloy during the solidification process. The preferential growth orientation, solute redistribution in both liquid and solid, solid/liquid interface solute conservation, interface curvature and the growth anisotropy were considered in the model. The model was applied to simulate the dendrite growth and Nb microsegregation behavior of U-5.5 Nb alloy during solidification, and the predicted results showed a reasonable agreement with the experimental results. The effects of cooling rates on the solidification microstructure and composition distribution of U-5.5 Nb were investigated by using the developed model. The results show that with the increase of the cooling rate, the average grain size decreases and the Nb microsegregation increases.展开更多
基金supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics(Grant No.2015B0203031)the Science Challenge Program(Grant No.TZ20160040201)
文摘In this work, a cellular automaton model has been developed to simulate the microstructure evolution of U-Nb alloy during the solidification process. The preferential growth orientation, solute redistribution in both liquid and solid, solid/liquid interface solute conservation, interface curvature and the growth anisotropy were considered in the model. The model was applied to simulate the dendrite growth and Nb microsegregation behavior of U-5.5 Nb alloy during solidification, and the predicted results showed a reasonable agreement with the experimental results. The effects of cooling rates on the solidification microstructure and composition distribution of U-5.5 Nb were investigated by using the developed model. The results show that with the increase of the cooling rate, the average grain size decreases and the Nb microsegregation increases.