Morphotropic phase boundary(MPB)plays a key role in tuning piezoelectric responses of ferroelectric ceramics.Here,Bi_(0.5)Na_(0.5)TiO_(3)modified BiFeO_(3)-BaTiO_(3)ternary solid solutions of 0.7BiFeO_(3)-(0.3-x)BaTiO...Morphotropic phase boundary(MPB)plays a key role in tuning piezoelectric responses of ferroelectric ceramics.Here,Bi_(0.5)Na_(0.5)TiO_(3)modified BiFeO_(3)-BaTiO_(3)ternary solid solutions of 0.7BiFeO_(3)-(0.3-x)BaTiO_(3)-xBi_(0.5)Na_(0.5)TiO_(3)(referred to as BF-BT-xBNT,0.00≤x≤0.04)were prepared for lead-free piezo-electrics.All the ceramics exhibit an MPB with coexisting rhombohedral(R)and tetragonal(T)phases,and the R/T phase ratio decreases upon increasing x.The increment of BNT promotes the grain growth,lowers the leakage current and Curie temperature(TC),and gradually drives the ferroelectric to relaxor transition.Because of the MPB with appropriate R/T phase ratio,increased grain size and density,and decreased leakage current,the well-balanced performance between d_(33)=206 pC/N and TC=488℃is obtained in x=0.01 case.In addition,the further enhanced in-situ d_(33)=286e347 pC/N is obtained in BF-BT-xBNT ceramics along with the improved depolarization temperature T_(d)from 280 to 312℃,showing a potential application for lead-free piezoceramics at high temperature.展开更多
基金supported by Natural Science Foundation of Guangxi,China(2022GXNSFBA03561219245084)Guangdong Basic and Applied Basic Research Foundation(2020A1515111004)National Natural Science Foundation of China(52032007,52072028),and Foundation for Guangxi Bagui scholars.
文摘Morphotropic phase boundary(MPB)plays a key role in tuning piezoelectric responses of ferroelectric ceramics.Here,Bi_(0.5)Na_(0.5)TiO_(3)modified BiFeO_(3)-BaTiO_(3)ternary solid solutions of 0.7BiFeO_(3)-(0.3-x)BaTiO_(3)-xBi_(0.5)Na_(0.5)TiO_(3)(referred to as BF-BT-xBNT,0.00≤x≤0.04)were prepared for lead-free piezo-electrics.All the ceramics exhibit an MPB with coexisting rhombohedral(R)and tetragonal(T)phases,and the R/T phase ratio decreases upon increasing x.The increment of BNT promotes the grain growth,lowers the leakage current and Curie temperature(TC),and gradually drives the ferroelectric to relaxor transition.Because of the MPB with appropriate R/T phase ratio,increased grain size and density,and decreased leakage current,the well-balanced performance between d_(33)=206 pC/N and TC=488℃is obtained in x=0.01 case.In addition,the further enhanced in-situ d_(33)=286e347 pC/N is obtained in BF-BT-xBNT ceramics along with the improved depolarization temperature T_(d)from 280 to 312℃,showing a potential application for lead-free piezoceramics at high temperature.