Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial ne...Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.展开更多
The number and arrangement of subunits that form a protein are referred to as quaternary structure.Knowing the quaternary structure of an uncharacterized protein provides clues to finding its biological function and i...The number and arrangement of subunits that form a protein are referred to as quaternary structure.Knowing the quaternary structure of an uncharacterized protein provides clues to finding its biological function and interaction process with other molecules in a biological system.With the explosion of protein sequences generated in the Post-Genomic Age,it is vital to develop an automated method to deal with such a challenge.To explore this prob-lem,we adopted an approach based on the pseudo position-specific score matrix(Pse-PSSM)descriptor,proposed by Chou and Shen,representing a protein sample.The Pse-PSSM descriptor is advantageous in that it can combine the evolution information and sequence-correlated informa-tion.However,incorporating all these effects into a descriptor may cause‘high dimension disaster’.To over-come such a problem,the fusion approach was adopted by Chou and Shen.A completely different approach,linear dimensionality reduction algorithm principal component analysis(PCA)is introduced to extract key features from the high-dimensional Pse-PSSM space.The obtained dimension-reduced descriptor vector is a compact repre-sentation of the original high dimensional vector.The jack-knife test results indicate that the dimensionality reduction approach is efficient in coping with complicated problems in biological systems,such as predicting the quaternary struc-ture of proteins.展开更多
文摘Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.
基金supported by the National Natural Science Foundation of China(Grant No.60704047).
文摘The number and arrangement of subunits that form a protein are referred to as quaternary structure.Knowing the quaternary structure of an uncharacterized protein provides clues to finding its biological function and interaction process with other molecules in a biological system.With the explosion of protein sequences generated in the Post-Genomic Age,it is vital to develop an automated method to deal with such a challenge.To explore this prob-lem,we adopted an approach based on the pseudo position-specific score matrix(Pse-PSSM)descriptor,proposed by Chou and Shen,representing a protein sample.The Pse-PSSM descriptor is advantageous in that it can combine the evolution information and sequence-correlated informa-tion.However,incorporating all these effects into a descriptor may cause‘high dimension disaster’.To over-come such a problem,the fusion approach was adopted by Chou and Shen.A completely different approach,linear dimensionality reduction algorithm principal component analysis(PCA)is introduced to extract key features from the high-dimensional Pse-PSSM space.The obtained dimension-reduced descriptor vector is a compact repre-sentation of the original high dimensional vector.The jack-knife test results indicate that the dimensionality reduction approach is efficient in coping with complicated problems in biological systems,such as predicting the quaternary struc-ture of proteins.