Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating consider...Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating considerably in the linear stage.However,different components of the incoherent light can be coupled by the Langmuir waves,so that stimulated Raman backward scattering can develop.When the bandwidth of incoherent light is larger than the Langmuir wave frequency,forward SRS can be seeded between different components of the incoherent light.The incoherent light can only increase the time duration for nonlinear saturation but cannot diminish the saturation level obviously.展开更多
By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser h...By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.展开更多
Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the...Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.展开更多
The parametric instability related to ion motion and the resulting cross-beam energy transfer are important aspects in the physics of inertial confinement fusion.The numerical simulation of the above physical problems...The parametric instability related to ion motion and the resulting cross-beam energy transfer are important aspects in the physics of inertial confinement fusion.The numerical simulation of the above physical problems still faces great technical challenges.This paper introduces a 2D hybrid-kinetic particle-in-cell(PIC)code,CBETor.In this code,the motion of ions is described by the kinetic method,the motion of electrons is described by the simplified fluid method and the propagation of laser in plasma is described by solving the wave equation.We use CBETor and the popular fully kinetic PIC code EPOCH to simulate the stimulated Brillouin scattering and cross-beam energy transfer process,respectively.The physical images are in good agreement,but CBETor can significantly reduce the amount of calculation.With the premise of correctly simulating the ion dynamics,our hybrid-kinetic code can effectively suppress the noise of numerical simulation and significantly expand the simulation scale of physical problems.CBETor is very suitable for simulating the physical process dominated by ion motion in the interaction of medium intensity laser and underdense plasma.展开更多
High harmonic generation(HHG)by two-color counter-rotating relativistic laser pulses with arbitrary frequency ratio is investigated through particle-in-cell simulations.It is shown that the dichromatic laser driver at...High harmonic generation(HHG)by two-color counter-rotating relativistic laser pulses with arbitrary frequency ratio is investigated through particle-in-cell simulations.It is shown that the dichromatic laser driver at various frequency ratios can effectively produce high-order harmonics with different spectral features.A general selection rule of this extended scheme can be obtained and the corresponding harmonic helicity can be identified through a simple analytical model based on a relativistic oscillating mirror.Thus,the results in this paper may offer new opportunities for arbitrary spectral control of generated harmonics,which is of significance for diverse potential applications in practice.展开更多
基金This work was supported in part by the National Science Foundation of China(Grant Nos.11421064,11374209,11405107 and 11374210).
文摘Stimulated Raman scattering(SRS)excited by incoherent light is studied via particle-in-cell simulations.It is shown that a large bandwidth of incoherent light can reduce the growth of SRS and electron heating considerably in the linear stage.However,different components of the incoherent light can be coupled by the Langmuir waves,so that stimulated Raman backward scattering can develop.When the bandwidth of incoherent light is larger than the Langmuir wave frequency,forward SRS can be seeded between different components of the incoherent light.The incoherent light can only increase the time duration for nonlinear saturation but cannot diminish the saturation level obviously.
基金financially supported by the National Natural Science Foundation of China(Nos.11475260,11305264,11622547,91230205,and 11474360)the National Basic Research Program of China(No.2013CBA01504)the Research Project of NUDT(No.JC14-02-02)
文摘By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.
基金supported by the National Key Research and Development Program of China (No. 2016YFA0401100)the Strategic Priority Re-search Program of Chinese Academy of Sciences (No. XDA25050700)+1 种基金the Scientific Research Foundation of Hunan Provincial Education Department (No. 20A042)National Natural Science Foundation of China (Nos. 11805062, 11675264, 11774430)
文摘Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.
基金supported by National Natural Science Foundation of China (Nos. 11774430, 11875091, 12075157 and 11975062)
文摘The parametric instability related to ion motion and the resulting cross-beam energy transfer are important aspects in the physics of inertial confinement fusion.The numerical simulation of the above physical problems still faces great technical challenges.This paper introduces a 2D hybrid-kinetic particle-in-cell(PIC)code,CBETor.In this code,the motion of ions is described by the kinetic method,the motion of electrons is described by the simplified fluid method and the propagation of laser in plasma is described by solving the wave equation.We use CBETor and the popular fully kinetic PIC code EPOCH to simulate the stimulated Brillouin scattering and cross-beam energy transfer process,respectively.The physical images are in good agreement,but CBETor can significantly reduce the amount of calculation.With the premise of correctly simulating the ion dynamics,our hybrid-kinetic code can effectively suppress the noise of numerical simulation and significantly expand the simulation scale of physical problems.CBETor is very suitable for simulating the physical process dominated by ion motion in the interaction of medium intensity laser and underdense plasma.
基金supported by the National Key R&D Program of China(No.2018YFA0404802),Science Challenge Project(No.TZ2016005)National Natural Science Foundation of China(Nos.11774430,11875319)+3 种基金Research Project of NUDT(Nos.ZK18-02-02)Fok Ying-Tong Education Foundation(No.161007),the Fundamental Research Funds for the Central Universities(YJ202025)the Natural Science Foundation of Hunan Province(Nos.2020JJ5614 and 2020JJ5624)the Scientific Research Foundation of Hunan Provincial Education Department(No.20A042).
文摘High harmonic generation(HHG)by two-color counter-rotating relativistic laser pulses with arbitrary frequency ratio is investigated through particle-in-cell simulations.It is shown that the dichromatic laser driver at various frequency ratios can effectively produce high-order harmonics with different spectral features.A general selection rule of this extended scheme can be obtained and the corresponding harmonic helicity can be identified through a simple analytical model based on a relativistic oscillating mirror.Thus,the results in this paper may offer new opportunities for arbitrary spectral control of generated harmonics,which is of significance for diverse potential applications in practice.