期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Anthropogenic Source Contributions to Ozone Formation in the Greater Houston Area
1
作者 Iqbal Hossan hongbo du Raghava R. Kommalapati 《Journal of Environmental Protection》 2021年第4期249-264,共16页
<span>The Houston-Galveston-Brazoria (HGB) area of Texas has historically experienced severe air pollution events with high concentrations of ozone (O</span><sub><span>3</span></sub>... <span>The Houston-Galveston-Brazoria (HGB) area of Texas has historically experienced severe air pollution events with high concentrations of ozone (O</span><sub><span>3</span></sub><span>) during the summer season. This study evaluates the contribution of different anthropogenic sources to ozone formation in the HGB area. The Emission Processing System (EPS3) is used to process emission files in four different scenarios (Base case as including All emission sources (BC), All sources— Area sources (AM</span><span><span><span>A</span></span></span><span><span><span style="font-family:;" "=""><span>), All sources—Point sources (AMP), and All sources— Mobile sources (AMM). These files are used as input in photochemical modeling with the Comprehensive Air Quality Model with Extensions (CAMx) to simulate ozone formation. The data is analyzed for daily maximum ozone </span><span>concentrations and contribution of source categories at three air quality </span><span>monitoring locations (La Porte Sylvan beach-C556, Houston Texas avenue-C411, and Texas city in Galveston-C683) for a study period of June 1</span></span></span></span><span><span><span>-</span></span></span><span><span><span style="font-family:;" "=""><span>June 30, 2012. The contribution of the point sources to ozone formation is dominated at all three locations, followed by mobile sources and area sources on high ozone days. The relative contributions of point sources are 27.51% ± </span><span>3.53%, 21.45% ± 7.36%, and 30.30% ± 9.36%;and mobile sources are 18.27%</span><span> ± 2.22%, 20.60% ± 6.89%, and 18.61% ± 7.43%;and area sources were 4.2% ± 1.65%, 5.21% ± 1.59%, and 3.72% ± 1.52% at C556, C411, and C683, respectively. These results demonstrate the importance of regulatory focus on controlling point and mobile source emissions for NAAQS attainment in the study region.</span></span></span></span> 展开更多
关键词 Anthropogenic Sources CAMX Model Sensitivity Ozone Precursors
下载PDF
Life-Cycle Analysis of Bio-Ethanol Fuel Emissions of Transportation Vehicles in Greater Houston Area
2
作者 Raghava Kommalapati Shahzeb Sheikh +1 位作者 hongbo du Ziaul Huque 《Journal of Environmental Protection》 2016年第6期793-804,共12页
Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, ... Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, carbon monoxide, nitrous oxide, particulate matter with the size less than 10 and 2.5 microns. Furthermore, various blends of bio-ethanol and gasoline are studied to learn about the impacts of higher blend on emissions. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model software are used to simulate for emissions. The research analyzes two pathways of emissions: Well-to-Pump and Pump-to-Vehicle analyses. It is found that the fuel cell vehicles using 100% bio-ethanol have shown the most reduction in the amount of all the pollutants from the Pump-to-Vehicle emission analysis. The Well-to-Pump analysis shows that only greenhouse gases (GHGs) reduce with higher blends of bio-ethanol. All other pollutants VOC, CO, NO<sub>x</sub>, SO<sub>x</sub>, PM10 and PM2.5 emissions increase with the higher blending ratios. The Pump-to-Vehicle analysis shows that all the pollutant emissions reduce with the percentage increase of bio-ethanol in the fuel blends. 展开更多
关键词 Life Cycle Assessment BIO-ETHANOL Greenhouse Gases Emissions Pollutant Emissions
下载PDF
Investigation of the influence of intermediate principal stress on the dynamic responses of rocks subjected to true triaxial stress state 被引量:7
3
作者 Wei You Feng Dai +2 位作者 Yi Liu hongbo du Ruochen Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期913-926,共14页
Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal ... Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks. 展开更多
关键词 Triaxial Hopkinson bar Intermediate principal stress Dynamic strength Failure modes Numerical simulation True triaxial stress
下载PDF
Relative Contribution of Different Source Categories to Ozone Exceedances in the Houston-Galveston-Brazoria Area 被引量:1
4
作者 Raghava R. Kommalapati Md Tarkik Shahriar +2 位作者 Venkata S. V. Botlaguduru hongbo du Ziaul Huque 《Journal of Environmental Protection》 2018年第8期847-858,共12页
The goal of this study is to analyze the relative contribution of different emission source categories to ozone in the Houston-Galveston-Brazoria (HGB) area of Texas. Emission Processing System (EPS3) is used to prepa... The goal of this study is to analyze the relative contribution of different emission source categories to ozone in the Houston-Galveston-Brazoria (HGB) area of Texas. Emission Processing System (EPS3) is used to prepare the emission files for five different source combination cases (Base case, Biogenic, Area + Biogenic, Mobile + Biogenic, Low-level Point + Biogenic). These emission files are used to perform photochemical modeling with Comprehensive Air Quality Model with Extensions (CAMx), and the results are analyzed with Visual Environment for Rich Data Interpretation (VERDI) tool. The daily maximum ozone concentrations and individual contributions of the source categories were analyzed over a 15-day study period between June 1-15, 2012, at three locations (University of Houston-Sugarland, Bayland Park and Conroe). Biogenic sources contributed an average of 49.7% ± 12.8%, 43.1% ± 12.0%, and 39.9% ± 9.28% at Sugarland, Bayland Park and Conroe sites respectively, indicating the significance of isoprene emissions from the vegetation in northeast Houston. On peak ozone days, contribution of Mobile + Biogenic source category averages about 80.1% ± 12.6%, 79.9% ± 6.50%, and 75.9% ± 10.9% at Sugarland, Bayland Park and Conroe sites respectively, indicating the dominance of mobile source NOX emissions and the necessity for regulatory focus on mobile source emissions control. 展开更多
关键词 OZONE HOUSTON CAMX BIOGENIC Mobile Sources
下载PDF
Air Quality Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area
5
作者 Iqbal Hossan Venkata Sai Vamsi Botlaguduru +2 位作者 hongbo du Raghava Rao Kommalapati Ziaul Huque 《Open Journal of Air Pollution》 2018年第3期263-285,共23页
The Houston-Galveston-Brazoria (HGB) area of Texas is a moderate nonattainment region for ozone, and has a history of severe summer ozone episodes. W. A. Parish power plant (WAP) located in the greater Houston area is... The Houston-Galveston-Brazoria (HGB) area of Texas is a moderate nonattainment region for ozone, and has a history of severe summer ozone episodes. W. A. Parish power plant (WAP) located in the greater Houston area is the largest coal and natural gas based electricity generating unit (EGU) in Texas. Forest residue is an abundant renewable resource, and can be used to offset coal usage at EGUs. This study evaluates the impact of co-firing 5%, 10%, and 15% (energy-basis) of forest residue at WAP on the air quality of the HGB area. Photochemical modeling with Comprehensive Air Quality Model with Extensions (CAMx) was conducted to investigate the air quality at three air quality monitoring sites (C696, C53, C556) in the HGB area, under two source scenarios (all-sources, point + biogenic sources). Significant reduction of SO2 and O3 was observed for 10% and 15% co-firing ratios at monitoring station (C696) close to WAP. The maximum reduction of ozone observed for 15% co-firing is 4.7% and 6.3% for all-sources and point + biogenic sources scenarios respectively. The reduction in other criteria air pollutants is not significant at all locations. The overall results from this study indicate that biomass co-firing at WAP would not lead to a significant reduction in ozone concentrations in the region during periods of peak ozone. 展开更多
关键词 Ozone HOUSTON PHOTOCHEMICAL Modeling BIOMASS CO-FIRING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部