Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood...Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.展开更多
Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features an...Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features and samples.The process was carried out in three steps:image pretreatment,feature extraction,and leaf recognition.In the image pretreatment processing,an image segmentation method based on hue,saturation and value color space and connected component labeling was presented,which can obtain the complete leaf image without veins and back-ground.The BP-RBF hybrid neural network was used to test the influence of shape and texture on species recogni-tion.The recognition accuracy of different classifiers was used to compare classification performance.The accuracy of the BP-RBF hybrid neural network using nine dimensional features was 96.2%,highest among all the classifiers.展开更多
基金This study was supported by the Fundamental Research Funds for the Central Universities(No.2572023DJ02).
文摘Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.
基金This work is supported by the Fundamental Research Funds for the Central Universities(No.2572020BC07)the Project of National Science Foundation of China(No.31570712).
文摘Plant recognition has great potential in forestry research and management.A new method combined back propagation neural network and radial basis function neural network to identify tree species using a few features and samples.The process was carried out in three steps:image pretreatment,feature extraction,and leaf recognition.In the image pretreatment processing,an image segmentation method based on hue,saturation and value color space and connected component labeling was presented,which can obtain the complete leaf image without veins and back-ground.The BP-RBF hybrid neural network was used to test the influence of shape and texture on species recogni-tion.The recognition accuracy of different classifiers was used to compare classification performance.The accuracy of the BP-RBF hybrid neural network using nine dimensional features was 96.2%,highest among all the classifiers.