Design of supportive atomic sites with a controllably adjusted coordinating environment is essential to advancing the reduction of CO_(2) to value-added fuels and chemicals and to achieving carbon neutralization.Herei...Design of supportive atomic sites with a controllably adjusted coordinating environment is essential to advancing the reduction of CO_(2) to value-added fuels and chemicals and to achieving carbon neutralization.Herein,atomic Ni(Zn)sites that are uniquely coordinated with ternary Zn(Ni)/N/O ligands were successfully decorated on formamide-derived porous carbon nanomaterials,possibly forming an atomic structure of Ni(N_(2)O_(1))-Zn(N_(2)O_(1)),as studied by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.With the mediation of additional O coordination,the Ni-Zn dual site induces significantly decreased desorption of molecular CO.The NiZn-NC decorated with rich Ni(N_(2)O_(1))-Zn(N_(2)O_(1))sites remarkably gained>97%CO Faraday efficiency over a wide potential range of -0.8 to -1.1 V(relative to reversible hydrogen electrode).Density functional theory computations suggest that the N/O dual coordination effectively modulates the electronic structure of the Ni-Zn duplex and optimizes the adsorption and conversion properties of CO_(2) and subsequent intermediates.Different from the conventional pathway of using Ni as the active site in the Ni-Zn duplex,it is found that the Ni-neighboring Zn sites in the Ni(N_(2)O_(1))-Zn(N_(2)O_(1))coordination showed much lower energy barriers of the CO_(2) protonation step and the subsequent dehydroxylation step.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:22071137Key Projects of China National Key R&D Plan,Grant/Award Number:2018YFE0118200+1 种基金Key Projects of Shandong Key R&D plan,Grant/Award Number:2019JZZY010506Taishan Scholar Foundation,Grant/Award Number:tspd20210308。
文摘Design of supportive atomic sites with a controllably adjusted coordinating environment is essential to advancing the reduction of CO_(2) to value-added fuels and chemicals and to achieving carbon neutralization.Herein,atomic Ni(Zn)sites that are uniquely coordinated with ternary Zn(Ni)/N/O ligands were successfully decorated on formamide-derived porous carbon nanomaterials,possibly forming an atomic structure of Ni(N_(2)O_(1))-Zn(N_(2)O_(1)),as studied by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.With the mediation of additional O coordination,the Ni-Zn dual site induces significantly decreased desorption of molecular CO.The NiZn-NC decorated with rich Ni(N_(2)O_(1))-Zn(N_(2)O_(1))sites remarkably gained>97%CO Faraday efficiency over a wide potential range of -0.8 to -1.1 V(relative to reversible hydrogen electrode).Density functional theory computations suggest that the N/O dual coordination effectively modulates the electronic structure of the Ni-Zn duplex and optimizes the adsorption and conversion properties of CO_(2) and subsequent intermediates.Different from the conventional pathway of using Ni as the active site in the Ni-Zn duplex,it is found that the Ni-neighboring Zn sites in the Ni(N_(2)O_(1))-Zn(N_(2)O_(1))coordination showed much lower energy barriers of the CO_(2) protonation step and the subsequent dehydroxylation step.