In this paper,for any local area-minimizing closed hypersurface∑with RcΣ=RΣ/ngΣ,immersed in a(n+1)-dimension Riemannian manifold M which has positive scalar curvature and nonnegative Ricci curvature,we obtain an u...In this paper,for any local area-minimizing closed hypersurface∑with RcΣ=RΣ/ngΣ,immersed in a(n+1)-dimension Riemannian manifold M which has positive scalar curvature and nonnegative Ricci curvature,we obtain an upper bound for the area of∑.In particular,when∑saturates the corresponding upper bound,∑is isometric to S^(n)and M splits in a neighborhood of∑.At the end of the paper,we also give the global version of this result.展开更多
基金supported by National Science Foundation of China(11601467).
文摘In this paper,for any local area-minimizing closed hypersurface∑with RcΣ=RΣ/ngΣ,immersed in a(n+1)-dimension Riemannian manifold M which has positive scalar curvature and nonnegative Ricci curvature,we obtain an upper bound for the area of∑.In particular,when∑saturates the corresponding upper bound,∑is isometric to S^(n)and M splits in a neighborhood of∑.At the end of the paper,we also give the global version of this result.