In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-...In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.展开更多
基金Acknowledgements. The authors would like to thank the editor and the anonymous referee for their valuable comments and suggestions on an earlier version of this paper. The work of Hongxing Rui (corresponding author) was supported by the NationM Natural Science Founda- tion of China (No. 11171190). The work of Hongfei Fu was supported by the National Natural Science Foundation of China (No. 11201485), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2013NJ001), and the Fundamental Research Funds for the Central Universities (No. 14CX02217A).
文摘In this paper, a constrained distributed optimal control problem governed by a first- order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in L2 (Ω)-norm, for the original state and adjoint state in H1 (Ω)-norm, and for the flux state and adjoint flux state in H(div; Ω)-norm. Finally, we use one numerical example to validate the theoretical findings.