Cell replacement therapy using neural progenitor cells(NPCs)has been shown to be an effective treatment for ischemic stroke.However,the therapeutic effect is unsatisfactory due to the imbalanced homeostasis of the loc...Cell replacement therapy using neural progenitor cells(NPCs)has been shown to be an effective treatment for ischemic stroke.However,the therapeutic effect is unsatisfactory due to the imbalanced homeostasis of the local microenvironment after ischemia.Microenvironmental acidosis is a common imbalanced homeostasis in the penumbra and could activate acid-sensing ion channels 1a(ASIC1a),a subunit of proton-gated cation channels following ischemic stroke.However,the role of ASIC1a in NPCs post-ischemia remains elusive.Here,our results indicated that ASIC1a was expressed in NPCs with channel functionality,which could be activated by extracellular acidification.Further evidence revealed that ASIC1a activation inhibited NPC migration and neurogenesis through RhoA signaling-mediated reorganization of filopodia formation,which could be primarily reversed by pharmacological or genetic disruption of ASIC1a.In vivo data showed that the knockout of the ASIC1a gene facilitated NPC migration and neurogenesis in the penumbra to improve behavioral recovery after stroke.展开更多
基金the National Natural Science Foundation of China(81873771,81371340,and 82271424)the Key Project of Natural Science Foundation of Chongqing(cstc2013jjB012503).
文摘Cell replacement therapy using neural progenitor cells(NPCs)has been shown to be an effective treatment for ischemic stroke.However,the therapeutic effect is unsatisfactory due to the imbalanced homeostasis of the local microenvironment after ischemia.Microenvironmental acidosis is a common imbalanced homeostasis in the penumbra and could activate acid-sensing ion channels 1a(ASIC1a),a subunit of proton-gated cation channels following ischemic stroke.However,the role of ASIC1a in NPCs post-ischemia remains elusive.Here,our results indicated that ASIC1a was expressed in NPCs with channel functionality,which could be activated by extracellular acidification.Further evidence revealed that ASIC1a activation inhibited NPC migration and neurogenesis through RhoA signaling-mediated reorganization of filopodia formation,which could be primarily reversed by pharmacological or genetic disruption of ASIC1a.In vivo data showed that the knockout of the ASIC1a gene facilitated NPC migration and neurogenesis in the penumbra to improve behavioral recovery after stroke.