Native point defects in ZnO are so complicated that most of them are still debating issues, although they have been studied for decades. In this paper, we experimentally reveal two sub-components usually hidden in the...Native point defects in ZnO are so complicated that most of them are still debating issues, although they have been studied for decades. In this paper, we experimentally reveal two sub-components usually hidden in the low energy tail of the main broad green luminescence band peaking at 547 nm (-2.267 eV) in intentionally undoped ZnO single crystal by selecting the below-band-gap (BBG) optical excitations (e.g. light wavelengths of 385 nm and 450 nm). Moreover, both sub-components are manifested as long persistent phosphorescence once the BBG excitations are removed. With the aid of a newly developed model, the energy depths of two electron traps involved within the long lived orange luminescence are determined to be 44 meV and 300 meV, respectively. The candidates of these two electron traps are argued to be most likely hydrogen and zinc interstitials in ZnO.展开更多
It is firmly demonstrated in experiment that the self-absorption(SA) effect can lead to the extinction of the zero-phonon line and the first-order longitudinal optical phonon sideband of free excitonic luminescence of...It is firmly demonstrated in experiment that the self-absorption(SA) effect can lead to the extinction of the zero-phonon line and the first-order longitudinal optical phonon sideband of free excitonic luminescence of ZnO at room temperature. Moreover, effectiveness degree of SA effect is found to be dependent on both absorption coefficient and travelling distance of emitted photons, as well as even lattice temperature, which is uniquely reflected by the redshift amount in emission peak in ZnO. It is also unambiguously proved that the SA effect still strictly obeys the Beer-Lambert law of absorption. This work not only uncovers the long-term puzzle of significant redshift of emission peak of ZnO at higher temperatures, but also shows that the SA effect may have to be carefully taken into consideration in the study of spontaneous emission, laser and relevant optoelectronic processes in luminescent materials and optoelectronic devices.展开更多
By ‘‘seeing" the green two-photon luminescence, two separate focusing points are observed on the propagation axis of a converging femtosecond laser beam in a ZnO single crystal rod. It is found that the selffoc...By ‘‘seeing" the green two-photon luminescence, two separate focusing points are observed on the propagation axis of a converging femtosecond laser beam in a ZnO single crystal rod. It is found that the selffocusing effect makes a significant contribution to the formation of the first focusing point, while the second focusing point is caused by self-refocusing. The position of the first focusing point is in good agreement with the value predicted by a model developed by Chin and his co-workers. These experimental findings could be the unprecedented evidence for the self-focusing and refocusing effect of the femtosecond laser filament propagation in nonlinear media.展开更多
基金This work was supported by a Hong Kong RGC-GRF Grant (Grant No. HKU 705812P), and National Natural Science Foundation of China (Grant No. 11374247, 11204231, 21373156).
文摘Native point defects in ZnO are so complicated that most of them are still debating issues, although they have been studied for decades. In this paper, we experimentally reveal two sub-components usually hidden in the low energy tail of the main broad green luminescence band peaking at 547 nm (-2.267 eV) in intentionally undoped ZnO single crystal by selecting the below-band-gap (BBG) optical excitations (e.g. light wavelengths of 385 nm and 450 nm). Moreover, both sub-components are manifested as long persistent phosphorescence once the BBG excitations are removed. With the aid of a newly developed model, the energy depths of two electron traps involved within the long lived orange luminescence are determined to be 44 meV and 300 meV, respectively. The candidates of these two electron traps are argued to be most likely hydrogen and zinc interstitials in ZnO.
基金supported by the Hong Kong RGC-GRF Grant (HKU 705812P)the National Natural Science Foundation of China (11374247 and 11504299)+2 种基金HKU SRT on New Materialsin part by HK-UGC AoE Grants (AoE/P-03/08)the financial support of the National Natural Science Foundation of China(11204231 and 21373156)
文摘It is firmly demonstrated in experiment that the self-absorption(SA) effect can lead to the extinction of the zero-phonon line and the first-order longitudinal optical phonon sideband of free excitonic luminescence of ZnO at room temperature. Moreover, effectiveness degree of SA effect is found to be dependent on both absorption coefficient and travelling distance of emitted photons, as well as even lattice temperature, which is uniquely reflected by the redshift amount in emission peak in ZnO. It is also unambiguously proved that the SA effect still strictly obeys the Beer-Lambert law of absorption. This work not only uncovers the long-term puzzle of significant redshift of emission peak of ZnO at higher temperatures, but also shows that the SA effect may have to be carefully taken into consideration in the study of spontaneous emission, laser and relevant optoelectronic processes in luminescent materials and optoelectronic devices.
基金financially supported by Shenzhen Municipal Science and Technology Innovation Council (JCYJ20170818141709893)National Natural Science Foundation of China (11374247)Hong Kong RGC-GRF Grant (HKU 705812P)
文摘By ‘‘seeing" the green two-photon luminescence, two separate focusing points are observed on the propagation axis of a converging femtosecond laser beam in a ZnO single crystal rod. It is found that the selffocusing effect makes a significant contribution to the formation of the first focusing point, while the second focusing point is caused by self-refocusing. The position of the first focusing point is in good agreement with the value predicted by a model developed by Chin and his co-workers. These experimental findings could be the unprecedented evidence for the self-focusing and refocusing effect of the femtosecond laser filament propagation in nonlinear media.