Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities,easy modification,high tunability,...Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities,easy modification,high tunability,and enriched active sites.Herein,we prepared a series of dihydroanthracene-cored terpyridine-based metallo-cuboctahedron nanomaterials through a selfassembly method,which exhibited satisfactory degradation performance for persistent organic pollutants under visible light irradiation.In particular,under light conditions,S1-Zn,one of the prepared nanomaterials,produced photogenerated holes oxidizing water molecules to∙OH,which attacked ibuprofen(IBU)for up to 95% degradation.Simultaneously,the corresponding photogenerated electrons reduced the dissolved oxygen in water,producing 66.2μmol/L hydrogen peroxide.The obtained supramolecular photocatalytic materials have a stable structure with non-precious metals and do not require a sacrificial agent.The metal sites of metallo-cuboctahedrons adsorb pollutants and transfer captured holes to them,accelerating degradation and promoting simultaneous H_(2)O_(2) production.This work not only proposes a simple and efficient synthesis method for supramolecular photocatalysts but also opens up opportunities for efficient,low-cost,and multifunctional materials for environmental persistent organic pollutants treatment.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22101061 to Z.Z.,21971257 to P.S.W.,and 52150056 and 52000044 to Z.H.C.)the Natural Science Foundation of Guangdong Province-Youth Enhancement Programme(No.2024A1515030235 to Z.Z.)+6 种基金Guangzhou Basic and Applied Basic Research of City and University(Institute)Joint Funding Project(Nos.SL2022A03J01050 to P.S.W.,SL2022A03J00929 to Z.Z.,and 202201022174 to T.-Z.X.)the Guangdong Provincial Pearl River Talents Program(No.2019QN01C243 to T.-Z.X.)the Science and Technology Projects in Guangzhou(No.202201010664 to T.W.)the Youth Project of Guangdong Natural Science Foundation(No.2021A1515110696 to Q.W.L.)the Characteristic Innovation Project of Guangdong Universities(No.2022KTSCX094 to Q.W.L.)the Technical Cooperation Project between Guangzhou University and Guangdong Guangye Inspection&Testing Group Co.,Ltd.(No.GK2023097)the Funding Program of Postgraduate Creative Ability Training in Guangzhou University(No.S202311078009 to Q.A.Y.).
文摘Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities,easy modification,high tunability,and enriched active sites.Herein,we prepared a series of dihydroanthracene-cored terpyridine-based metallo-cuboctahedron nanomaterials through a selfassembly method,which exhibited satisfactory degradation performance for persistent organic pollutants under visible light irradiation.In particular,under light conditions,S1-Zn,one of the prepared nanomaterials,produced photogenerated holes oxidizing water molecules to∙OH,which attacked ibuprofen(IBU)for up to 95% degradation.Simultaneously,the corresponding photogenerated electrons reduced the dissolved oxygen in water,producing 66.2μmol/L hydrogen peroxide.The obtained supramolecular photocatalytic materials have a stable structure with non-precious metals and do not require a sacrificial agent.The metal sites of metallo-cuboctahedrons adsorb pollutants and transfer captured holes to them,accelerating degradation and promoting simultaneous H_(2)O_(2) production.This work not only proposes a simple and efficient synthesis method for supramolecular photocatalysts but also opens up opportunities for efficient,low-cost,and multifunctional materials for environmental persistent organic pollutants treatment.