Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,espe...Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,especially the decayed capacity under low temperature,are still critical challenges toward high-specific-capacity AIBs.Herein,we report a binder-free and freestanding metal-organic framework-derived FeS_(2)@C/carbon nanotube(FeS_(2)@C/CNT)as a novel all-climate cathode in AIBs working under a wide temperature window between−25 and 50℃ with exceptional flexibility.The resultant cathode not only drastically suppresses the side reaction and volu-metric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity(above 151 mAh g^(−1) at 2 A g^(−1))at room temperature.More importantly,to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs,the new hierarchical conductive composite FeS_(2)@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g^(−1) capacity even under−25°C.The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.展开更多
Flexible and free-standing electrospun nanofibres have been used as electrode materials in electrochemical energy storage systems due to their versatile properties,such as mechanical stability,superb electrical conduc...Flexible and free-standing electrospun nanofibres have been used as electrode materials in electrochemical energy storage systems due to their versatile properties,such as mechanical stability,superb electrical conductivity,and high functionality.In energy storage systems such as metal-ion,metal-air,and metal-sulphur batteries,electrospun nanofibres are vital for constructing flexible electrodes and substantially enhancing their electrochemical properties.The need for flexible batteries has increased with increasing demand for new products such as wearable and flexible devices,including smartwatches and flexible displays.Conventional batteries have several semirigid to rigid components that limit their expansion in the flexible device market.The creation of flexible and wearable batteries with greater mechanical flexibility,higher energy,and substantial power density is critical in meeting the demand for these new electronic items.The implementation of carbon and carbon-derived composites into flexible electrodes is required to realize this goal.It is essential to understand recent advances and the comprehensive foundation behind the synthesis and assembly of various flexible electrospun nanofibres.The design of nanofibres,including those comprising carbon,N-doped carbon,hierarchical,porous carbon,and metal/metal oxide carbon composites,will be explored.We will highlight the merits of electrospun carbon flexible electrodes by describing porosity,surface area,binder-free and free-standing electrode construction,cycling stability,and performance rate.Significant scientific progress has been achieved and logistical challenges have been met in promoting secondary battery usage;therefore,this review of flexible electrode materials will advance this easily used and sought-after technology.The challenges and prospects involved in the timely development of carbon nanofibre composite flexible electrodes and batteries will be addressed.展开更多
基金financial support for Australian Research Council through its Discovery and Linkage Programsperformed in part at Australian Microscopy&Microanalysis Research Facility at the Centre for Microscopy and Microanalysis,the University of Queensland(UQ)+3 种基金The authors also acknowledge National Natural Science Foundation of China(51901100 and 51871119)Jiangsu Provincial Founds for Natural Science Foundation(BK20180015)China Postdoctoral Science Foundation(2018M640481 and 2019T120426)Jiangsu Postdoctoral Research Fund(2019K003)。
文摘Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,especially the decayed capacity under low temperature,are still critical challenges toward high-specific-capacity AIBs.Herein,we report a binder-free and freestanding metal-organic framework-derived FeS_(2)@C/carbon nanotube(FeS_(2)@C/CNT)as a novel all-climate cathode in AIBs working under a wide temperature window between−25 and 50℃ with exceptional flexibility.The resultant cathode not only drastically suppresses the side reaction and volu-metric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity(above 151 mAh g^(−1) at 2 A g^(−1))at room temperature.More importantly,to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs,the new hierarchical conductive composite FeS_(2)@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g^(−1) capacity even under−25°C.The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.
基金supported by the National Natural Science Foundation of China(51871119,51901100,22075141)High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province,NSFC-Yunnan Joint Foundation(U2002213)+5 种基金Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)Jiangsu Provincial Funds for Natural Science Foundation(BK20170793,BK20180015)Six Talent Peak Project of Jiangsu Province(2018-XCL-033)China Postdoctoral Science Foundation(2018M640481)Jiangsu-Innovate UK Business Competition(BZ2017061)Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025).
文摘Flexible and free-standing electrospun nanofibres have been used as electrode materials in electrochemical energy storage systems due to their versatile properties,such as mechanical stability,superb electrical conductivity,and high functionality.In energy storage systems such as metal-ion,metal-air,and metal-sulphur batteries,electrospun nanofibres are vital for constructing flexible electrodes and substantially enhancing their electrochemical properties.The need for flexible batteries has increased with increasing demand for new products such as wearable and flexible devices,including smartwatches and flexible displays.Conventional batteries have several semirigid to rigid components that limit their expansion in the flexible device market.The creation of flexible and wearable batteries with greater mechanical flexibility,higher energy,and substantial power density is critical in meeting the demand for these new electronic items.The implementation of carbon and carbon-derived composites into flexible electrodes is required to realize this goal.It is essential to understand recent advances and the comprehensive foundation behind the synthesis and assembly of various flexible electrospun nanofibres.The design of nanofibres,including those comprising carbon,N-doped carbon,hierarchical,porous carbon,and metal/metal oxide carbon composites,will be explored.We will highlight the merits of electrospun carbon flexible electrodes by describing porosity,surface area,binder-free and free-standing electrode construction,cycling stability,and performance rate.Significant scientific progress has been achieved and logistical challenges have been met in promoting secondary battery usage;therefore,this review of flexible electrode materials will advance this easily used and sought-after technology.The challenges and prospects involved in the timely development of carbon nanofibre composite flexible electrodes and batteries will be addressed.