The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report c...The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ^(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ^(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ^(11)B values between wall rocks and monzogranite implies that a transfer of δ^(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ^(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite.展开更多
Copper deposits in China are mostly small-and medium-sized,with few large-scale ones.The average grade is low,with only 16.2%of rich copper resources(grade>1%).This article systematically summarizes the types of co...Copper deposits in China are mostly small-and medium-sized,with few large-scale ones.The average grade is low,with only 16.2%of rich copper resources(grade>1%).This article systematically summarizes the types of copper deposits in China and highlights that important copper-forming areas are distributed in the Bangongco-Nujiang metallogenic belt,Gangdise-Southern Xizang metallogenic belt,Southwest Sanjiang metallogenic belt,East Tianshan-Beishan metallogenic belt,Daxing'anling metallogenic belt,and Eastern Jihei metallogenic belt.The deployment of a new round of breakthroughs in mineral exploration is centered on the formation of 11 large resource camps(Geji,Xinlong,Duolong,Xiongcun-Zhunuo,Julong-Jiama-Bangpu,Yulong,Pulang,Lala-Dongchuan,Dexing,Duobaoshan,and Tuwu-Yandong).Copper reserves are expected to increase by 11.95 million tons by 2025,20.2 million tons by 2030,and 26.9 million tons by 2035.Furthermore,two new copper resource camps will be established,and nine large-scale copper resource camps will be consolidated by then.展开更多
The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases i...The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions.However,carbon-sulfur isotope cycling of the global SPICE event,which may be controlled by global and regional events,is still poorly understood,especially in south China.Therefore,theδ13CPDB,δ18OPDBδ34S_(CAS),total carbon(TC),total organic carbon(TOC)and total sulfate(TS)of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.Theδ34S_(CAS)values in the onset and rising limb are not obviously higher than that in the preceding SPICE,meanwhile sulfate(δ34S_(CAS))isotope values increase slightly with increasingδ13CPDB in rising limb and near peak of SPICE(130–160 m).The sulfate(δ34S_(CAS))isotope values gradually decrease from 48.6‰to 18‰in the peak part of SPICE and even increase from 18%to 38.5%in the descending limb of SPICE.The abnormal asynchronous C−S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction,and it was also influenced by regional events such as enhanced siliciclastic provenance input(sulfate),weathering of a carbonate platform and sedimentary environment.Sedimentary environment and lithology are not the main reason for global SPICE event but influence theδ13CPDB excursion-amplitude of SPICE.Sea level eustacy and carbonate platform weathering probably made a major contribution to theδ13CPDB excursion during the SPICE,in particularly,near peak of SPICE.Besides,the trilobite extinctions,anoxia,organic-matter burial and siliciclastic provenance input also play an important role in the onset,early and late stage of SPICE event.展开更多
基金financially supported by the National Basic Research Program of China (No. 2014CB440800)China Geological Survey Bureau (No. 1212011140056)
文摘The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ^(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ^(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ^(11)B values between wall rocks and monzogranite implies that a transfer of δ^(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ^(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite.
基金financially supported by the Strategic Research and Consulting Project of the Chinese Academy of Engineering Consulting Project“Research on Strategic Mineral Resources Guarantee for New Energy and New Materials” (No.2022-XY-82)。
文摘Copper deposits in China are mostly small-and medium-sized,with few large-scale ones.The average grade is low,with only 16.2%of rich copper resources(grade>1%).This article systematically summarizes the types of copper deposits in China and highlights that important copper-forming areas are distributed in the Bangongco-Nujiang metallogenic belt,Gangdise-Southern Xizang metallogenic belt,Southwest Sanjiang metallogenic belt,East Tianshan-Beishan metallogenic belt,Daxing'anling metallogenic belt,and Eastern Jihei metallogenic belt.The deployment of a new round of breakthroughs in mineral exploration is centered on the formation of 11 large resource camps(Geji,Xinlong,Duolong,Xiongcun-Zhunuo,Julong-Jiama-Bangpu,Yulong,Pulang,Lala-Dongchuan,Dexing,Duobaoshan,and Tuwu-Yandong).Copper reserves are expected to increase by 11.95 million tons by 2025,20.2 million tons by 2030,and 26.9 million tons by 2035.Furthermore,two new copper resource camps will be established,and nine large-scale copper resource camps will be consolidated by then.
基金the open fund of State Key Laboratory of Biogeology and Environmental Geology(No.GBL21506)the National Natural Science Foundation of China(Grant Nos.42072140 and 42102133)+2 种基金Chongqing Natural Science Foundation of China(No.cstc2020jcyj msxmX0217)Science and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJZD-M202101502 and KJQN202001517)Chongqing University of Science and Technology(No.ckrc2019035).
文摘The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions.However,carbon-sulfur isotope cycling of the global SPICE event,which may be controlled by global and regional events,is still poorly understood,especially in south China.Therefore,theδ13CPDB,δ18OPDBδ34S_(CAS),total carbon(TC),total organic carbon(TOC)and total sulfate(TS)of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.Theδ34S_(CAS)values in the onset and rising limb are not obviously higher than that in the preceding SPICE,meanwhile sulfate(δ34S_(CAS))isotope values increase slightly with increasingδ13CPDB in rising limb and near peak of SPICE(130–160 m).The sulfate(δ34S_(CAS))isotope values gradually decrease from 48.6‰to 18‰in the peak part of SPICE and even increase from 18%to 38.5%in the descending limb of SPICE.The abnormal asynchronous C−S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction,and it was also influenced by regional events such as enhanced siliciclastic provenance input(sulfate),weathering of a carbonate platform and sedimentary environment.Sedimentary environment and lithology are not the main reason for global SPICE event but influence theδ13CPDB excursion-amplitude of SPICE.Sea level eustacy and carbonate platform weathering probably made a major contribution to theδ13CPDB excursion during the SPICE,in particularly,near peak of SPICE.Besides,the trilobite extinctions,anoxia,organic-matter burial and siliciclastic provenance input also play an important role in the onset,early and late stage of SPICE event.