期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
以“学”为中心的问题式实验教学改革
1
作者 宰建陶 陈虹锦 +3 位作者 魏霄 张利 马荔 钱雪峰 《大学化学》 CAS 2024年第4期40-47,共8页
基础化学实验不仅可以验证化学理论和训练实验技能,更应注重学生分析问题、解决问题能力的提升。针对基础学科拔尖学生的培养,我们本着因材施教的理念,开展了基础化学实验课程的教学内容、知识体系、教学方法的改革和实践。通过构建以... 基础化学实验不仅可以验证化学理论和训练实验技能,更应注重学生分析问题、解决问题能力的提升。针对基础学科拔尖学生的培养,我们本着因材施教的理念,开展了基础化学实验课程的教学内容、知识体系、教学方法的改革和实践。通过构建以“学”为中心、问题为导向的教学模式,系统提升实验教学在人才培养中的效果和作用。 展开更多
关键词 探究式课题研究 创新能力培养 基础化学实验
下载PDF
Tourmaline geochemistry and boron isotopic variations as a guide to fluid evolution in the Qiman Tagh W-Sn belt, East Kunlun, China 被引量:1
2
作者 Zhen Zheng Yanjing chen +3 位作者 Xiaohua Deng Suwei Yue hongjin chen Qingfei Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期569-580,共12页
The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report c... The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ^(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ^(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ^(11)B values between wall rocks and monzogranite implies that a transfer of δ^(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ^(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite. 展开更多
关键词 TOURMALINE Chemical composition BORON isotope Qiman Tagh W-Sn BELT Fluid evolution
下载PDF
Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China
3
作者 Xianfeng TAN Long LUO +7 位作者 hongjin chen Jon GLUYAS Zihu ZHANG chensheng JIN Lidan LEI Jia WANG Qing chen Meng LI 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期713-726,共14页
The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases i... The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions.However,carbon-sulfur isotope cycling of the global SPICE event,which may be controlled by global and regional events,is still poorly understood,especially in south China.Therefore,theδ13CPDB,δ18OPDBδ34S_(CAS),total carbon(TC),total organic carbon(TOC)and total sulfate(TS)of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.Theδ34S_(CAS)values in the onset and rising limb are not obviously higher than that in the preceding SPICE,meanwhile sulfate(δ34S_(CAS))isotope values increase slightly with increasingδ13CPDB in rising limb and near peak of SPICE(130–160 m).The sulfate(δ34S_(CAS))isotope values gradually decrease from 48.6‰to 18‰in the peak part of SPICE and even increase from 18%to 38.5%in the descending limb of SPICE.The abnormal asynchronous C−S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction,and it was also influenced by regional events such as enhanced siliciclastic provenance input(sulfate),weathering of a carbonate platform and sedimentary environment.Sedimentary environment and lithology are not the main reason for global SPICE event but influence theδ13CPDB excursion-amplitude of SPICE.Sea level eustacy and carbonate platform weathering probably made a major contribution to theδ13CPDB excursion during the SPICE,in particularly,near peak of SPICE.Besides,the trilobite extinctions,anoxia,organic-matter burial and siliciclastic provenance input also play an important role in the onset,early and late stage of SPICE event. 展开更多
关键词 sulfate isotope excursion terrigenous matter carbonate platform weathering sea level change transitional slope environment Waergang section
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部