期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Grain Boundaries Engineering of Hollow Copper Nanoparticles Enables Highly Efficient Ammonia Electrosynthesis from Nitrate 被引量:3
1
作者 Qi Hu Yongjie Qin +6 位作者 Xiaodeng Wang hongju zheng Keru Gao Hengpan Yang Peixin Zhang Minhua Shao Chuanxin He 《CCS Chemistry》 CAS 2022年第6期2053-2064,共12页
Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared wi... Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared with the nitrogen reduction reaction(NRR),the NH_(3) production rate of NO_(3)−RR is still well below the industrial Haber-Bosch route due to the lack of robust electrocatalysts for yielding high current densitieswith concurrently good suppression of hydrogen evolution reaction(HER).Herein,we describe an in situ electrochemical strategy for the synthesis of hollow carbon-coated Cu nanoparticles(NPs)(HSCu@C)with abundant grain boundaries(HSCu-AGB@C)for highly efficient NO_(3)−RR in both alkaline and neutral media.Impressively,in alkaline media,the HSCu-AGB@C can achieve a maximum NH3 Faradaic efficiency of 94.2% with an ultrahigh NH_(3) rate of 487.8 mmol g^(−1) cat h^(−1) at−0.2 V versus a reversible hydrogen electrode,more than 2.4-fold of the rate obtained in the Haber-Bosch.Both theoretic computations and experimental results uncover that the grain boundaries play the key to improve the NO_(3)−RR performance.Herein,the industrial-scale NH_(3) production ratemay open exciting opportunities for the practical electrosynthesis NH_(3) under ambient conditions. 展开更多
关键词 grain boundaries hollow structures artificial ammonia production nitrate reduction reaction Haber-Bosch route
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部