Superconducting nanowire single-photon detectors(SNSPDs)with low energy gaps exhibit superior single-photon sensitivity at infrared wavelengths[1],and state-of-the-art SNSPDs have the potential to meet the stringent d...Superconducting nanowire single-photon detectors(SNSPDs)with low energy gaps exhibit superior single-photon sensitivity at infrared wavelengths[1],and state-of-the-art SNSPDs have the potential to meet the stringent demands of mid-IR(MIR)detection[2].However,the nanowire thickness(~λ/1000-λ/600)and width(~λ/166-λ/60)are much smaller than those at MIR wavelengths,which results in weak absorption with a low detection efficiency[3].展开更多
基金National Natural Science Foundation of China(12033002,62275118,62071218,62101240,62227820,12161141009,and 62288101)Innovation Program for Quantum Science and Technology(2021ZD0303401)+2 种基金Civil Aerospace Technology Research Project(D040305)Fundamental Research Funds for the Central Universities,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Postgraduate Research&Practice Innovation Program of Jiangsu Province.
文摘Superconducting nanowire single-photon detectors(SNSPDs)with low energy gaps exhibit superior single-photon sensitivity at infrared wavelengths[1],and state-of-the-art SNSPDs have the potential to meet the stringent demands of mid-IR(MIR)detection[2].However,the nanowire thickness(~λ/1000-λ/600)and width(~λ/166-λ/60)are much smaller than those at MIR wavelengths,which results in weak absorption with a low detection efficiency[3].