The microstructure of 40Cr and T10A steel sample and its surface to be welded is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the surface is cleaned. Under non-vacuum and no shield...The microstructure of 40Cr and T10A steel sample and its surface to be welded is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the surface is cleaned. Under non-vacuum and no shielded gas, the welding parameter of isothermal superplastic solidphase welding and the effect of surface microstructure prior to pressure welding on the quality of joint are studied. At the temperature of 730~750℃ and at initial strain rate of (2~4) × 10-4 s-l, the strength of the joint is up to or close to that of 40Cr base metal in 3-5 min pressure welding展开更多
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna...Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.展开更多
Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particu...Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particular,a transparent EM-shielding glass with a large-aspect-ratio metal mesh can effectively alleviate the contradictory problems of shielding effectiveness and light-transmission performance constraints.However,the fabrication of high-aspect-ratio metal meshes on glass substrates has problems such as high cost,complex processes,low efficiency,small area,and easy damage issues,which limit their application in the field of high-performance,transparent EM-shielding glass.Therefore,this paper proposes a composite additive manufacturing process based on electric-field-driven microjet 3D printing and electroplating.By fabricating metal meshes with an Ag-Cu core-shell structure on a glass substrate,EM-shielding glass with high shielding efficiency and light transmission can be manufactured without increasing the aspect ratio of the metal meshes.The prepared Ag-Cu composite metal mesh has excellent optoelectronic properties(period 250𝜇m,line width 10𝜇m,90.1%transmission at 550 nm visible light,square resistance 0.21Ω/sq),efficient electrothermal effect(3 V DC voltage can reach 189°C steady-state temperature),stable EM-shielding effectiveness(average shielding effectiveness 23 dB at X-band),and acceptable mechanical and environmental stability(less than 3%change in square resistance after 150-times adhesion test and less than 6%and 0.6%change in resistance after 72 h in acid and alkali environments,respectively).This method provides a new solution for the mass production of high-performance large-area transparent electric heating/EM-shielding glass.展开更多
基金supported by the Henan Natural Science Foundation of China under Grant No.984040900.
文摘The microstructure of 40Cr and T10A steel sample and its surface to be welded is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the surface is cleaned. Under non-vacuum and no shielded gas, the welding parameter of isothermal superplastic solidphase welding and the effect of surface microstructure prior to pressure welding on the quality of joint are studied. At the temperature of 730~750℃ and at initial strain rate of (2~4) × 10-4 s-l, the strength of the joint is up to or close to that of 40Cr base metal in 3-5 min pressure welding
基金supported by the National Natural Science Foundation of China(Grant No.52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(Grand No.2020KJB003)Natural Science Foundation of Shandong Province,China(Granted Nos.ZR2022ME014,ZR2021ME139 and ZR2020ZD04)。
文摘Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.
基金supported by National Natural Science Foundation of China(Grant No.52175331)Shandong Provincial National Natural Science Foundation of China(Grant Nos.ZR2020ZD04,ZR2022ME014,ZR2022QE077)Support Plan for Outstanding Youth Innovation Team in Universities of Shandong Province of China(Grant No.2020KJB003).
文摘Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particular,a transparent EM-shielding glass with a large-aspect-ratio metal mesh can effectively alleviate the contradictory problems of shielding effectiveness and light-transmission performance constraints.However,the fabrication of high-aspect-ratio metal meshes on glass substrates has problems such as high cost,complex processes,low efficiency,small area,and easy damage issues,which limit their application in the field of high-performance,transparent EM-shielding glass.Therefore,this paper proposes a composite additive manufacturing process based on electric-field-driven microjet 3D printing and electroplating.By fabricating metal meshes with an Ag-Cu core-shell structure on a glass substrate,EM-shielding glass with high shielding efficiency and light transmission can be manufactured without increasing the aspect ratio of the metal meshes.The prepared Ag-Cu composite metal mesh has excellent optoelectronic properties(period 250𝜇m,line width 10𝜇m,90.1%transmission at 550 nm visible light,square resistance 0.21Ω/sq),efficient electrothermal effect(3 V DC voltage can reach 189°C steady-state temperature),stable EM-shielding effectiveness(average shielding effectiveness 23 dB at X-band),and acceptable mechanical and environmental stability(less than 3%change in square resistance after 150-times adhesion test and less than 6%and 0.6%change in resistance after 72 h in acid and alkali environments,respectively).This method provides a new solution for the mass production of high-performance large-area transparent electric heating/EM-shielding glass.