Organic-inorganic hybrid perovskite materials have attracted significant research efforts because of their outstanding properties. Meanwhile the crystallization of organic-inorganic hybrid perovskite materials can sig...Organic-inorganic hybrid perovskite materials have attracted significant research efforts because of their outstanding properties. Meanwhile the crystallization of organic-inorganic hybrid perovskite materials can significantly influence the films quality. Here, we research the influence of the characteristics of PbI2 thin film on final perovskite films and the mechanisms of film formation based on the two-step sequential deposition method. We found that the characteristics of PbI2 thin film, such as the grain size, the grain shape, the surface roughness and the film densification, have significant effects on the final perovskite films due to different film crystallization process. According to the analysis on the characteristics of the perovskite films obtained from different PbI2precursor, we suggested that the formation of perovskite film begins from the PbI2 crystals expanding when they are converted to MAPbI3 perovskite by migration of MA+ cations from the grain boundaries.展开更多
In recent years, flexible perovskite solar cells have received extensive attention and rapid development due to their advantages of lightweight, portability, wearability and applications in near-space. However,due to ...In recent years, flexible perovskite solar cells have received extensive attention and rapid development due to their advantages of lightweight, portability, wearability and applications in near-space. However,due to the limitations of their preparation process and other factors, high-efficiency and large-area flexible perovskite solar cells still have a lot of room for development. In our work, a flexible perovskite solar cell(PEN/ITO/Sn O2/KCl/Cs0.05(MA0.17 FA0.83)0.95 Pb(I0.83 Br0.17)3/spiro/Au) was prepared using a low temperature(no higher than 100°C) solution process, and the device with the highest efficiency of 16.16%was obtained by adjusting the concentration of the KCl modified layer. Meanwhile, the efficiency of the large area(1 cm2) flexible solar cell was higher than 13%. At the same time, the passivation of the KCl interface modification layer inhibits the formation of the defect states, which reduced the surface recombination of the perovskite and improved the carrier transport performance, and the hysteresis effect of the device was also reduced accordingly.展开更多
文摘Organic-inorganic hybrid perovskite materials have attracted significant research efforts because of their outstanding properties. Meanwhile the crystallization of organic-inorganic hybrid perovskite materials can significantly influence the films quality. Here, we research the influence of the characteristics of PbI2 thin film on final perovskite films and the mechanisms of film formation based on the two-step sequential deposition method. We found that the characteristics of PbI2 thin film, such as the grain size, the grain shape, the surface roughness and the film densification, have significant effects on the final perovskite films due to different film crystallization process. According to the analysis on the characteristics of the perovskite films obtained from different PbI2precursor, we suggested that the formation of perovskite film begins from the PbI2 crystals expanding when they are converted to MAPbI3 perovskite by migration of MA+ cations from the grain boundaries.
基金supported by the National Natural Science Foundation of China(Grant No.61974074)the Fundamental Research Funds for the Central Universities,Nankai University(Grant No.63201176,92022027)。
文摘In recent years, flexible perovskite solar cells have received extensive attention and rapid development due to their advantages of lightweight, portability, wearability and applications in near-space. However,due to the limitations of their preparation process and other factors, high-efficiency and large-area flexible perovskite solar cells still have a lot of room for development. In our work, a flexible perovskite solar cell(PEN/ITO/Sn O2/KCl/Cs0.05(MA0.17 FA0.83)0.95 Pb(I0.83 Br0.17)3/spiro/Au) was prepared using a low temperature(no higher than 100°C) solution process, and the device with the highest efficiency of 16.16%was obtained by adjusting the concentration of the KCl modified layer. Meanwhile, the efficiency of the large area(1 cm2) flexible solar cell was higher than 13%. At the same time, the passivation of the KCl interface modification layer inhibits the formation of the defect states, which reduced the surface recombination of the perovskite and improved the carrier transport performance, and the hysteresis effect of the device was also reduced accordingly.