Tea plants(Camellia sinensis)are commercially cultivated in>60 countries,and their fresh leaves are processed into tea,which is the most widely consumed beverage in the world.Although several chromosome-level tea p...Tea plants(Camellia sinensis)are commercially cultivated in>60 countries,and their fresh leaves are processed into tea,which is the most widely consumed beverage in the world.Although several chromosome-level tea plant genomes have been published,they collapsed the two haplotypes and ignored a large number of allelic variations that may underlie important biological functions in this species.Here,we present a phased chromosome-scale assembly for an elite oolong tea cultivar,"Huangdan",that is well known for its high levels of aroma.Based on the two sets of haplotype genome data,we identi fi ed numerous genetic variations and a substantial proportion of allelic imbalance related to important traits,including aroma-and stress-related alleles.Comparative genomics revealed extensive structural variations as well as expansion of some gene families,such as terpene synthases(TPSs),that likely contribute to the high-aroma characteristics of the backbone parent,underlying the molecular basis for the biosynthesis of aroma-related chemicals in oolong tea.Our results uncovered the genetic basis of special features of this oolong tea cultivar,providing fundamental genomic resources to study evolution and domestication for the economically important tea crop.展开更多
基金This research was funded by the Fujian Province"2011 Collaborative Innovation Center",the Chinese Oolong Tea Industry Innovation Center special project(J 2015-75)the National Natural Science Foundation of China(31701874)+3 种基金the Major Special Project of Scientific and Technological Innovation on Anxi Tea(AX2021001)the Earmarked Fund for the China Agriculture Research System(CARS-19)the Scientific Research Foundation of the Graduate School of Fujian Agriculture and Forestry University(324-1122yb060)the Scientific Research Foundation of Horticulture College of Fujian Agriculture and Forestry University(2018B02).
文摘Tea plants(Camellia sinensis)are commercially cultivated in>60 countries,and their fresh leaves are processed into tea,which is the most widely consumed beverage in the world.Although several chromosome-level tea plant genomes have been published,they collapsed the two haplotypes and ignored a large number of allelic variations that may underlie important biological functions in this species.Here,we present a phased chromosome-scale assembly for an elite oolong tea cultivar,"Huangdan",that is well known for its high levels of aroma.Based on the two sets of haplotype genome data,we identi fi ed numerous genetic variations and a substantial proportion of allelic imbalance related to important traits,including aroma-and stress-related alleles.Comparative genomics revealed extensive structural variations as well as expansion of some gene families,such as terpene synthases(TPSs),that likely contribute to the high-aroma characteristics of the backbone parent,underlying the molecular basis for the biosynthesis of aroma-related chemicals in oolong tea.Our results uncovered the genetic basis of special features of this oolong tea cultivar,providing fundamental genomic resources to study evolution and domestication for the economically important tea crop.