Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates ...Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates the simulation of this C-mode and its asymmetric SST response in HadGEM3 and its resolution sensitivity using three sets of simulations at horizontal resolutions of N96, N216 and N512. The results show that HadGEM3 can capture well the spatial pattern of the C-mode associated surface wind anomalies, as well as the asymmetric response of SST in the tropical Pacific, but it strongly overestimates the explained variability of the C-mode compared to the ENSO mode. The model with the three resolutions is able to reproduce the distinct spectral peaks of the C-mode at the near annual combination frequencies, but the performance in simulating the longer periods is not satisfactory, presumably due to the unrealistic simulation of the ENSO mode. Increasing the horizontal resolution can improve the consistency between atmospheric and oceanic representations of the C-mode, but not necessarily enhance the accuracy of C-mode simulation compared with observation.展开更多
Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued ...Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.展开更多
Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using obse...Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using observations from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) in July, 2008. The calorimetric method, which involves soil heat flux measurement with an HFP01SC self-calibrating heat flux plate buried at a depth of 5 cm and heat storage in the soil between the plate and the surface, is here called the ITHP approach. The results show good linear relationships between the soil heat fluxes measured with the HFP01SC heat flux plate and those calculated with the HA technique and the TDEC method, respectively, at a depth of 5 cm. The soil heat fluxes calculated with the latter two methods well follow the phase measured with the HFP01SC heat flux plate. The magnitudes of the soil heat flux calculated with the HA technique and the TDEC method are close to each other, and they are about 2 percent and 6 percent larger than the measured soil heat flux, respectively, which mainly occur during the nighttime. Moreover, the ground heat fluxes calculated with the TDEC method and the HA technique are highly correlated with each other (R2= 0.97), and their difference is only about 1 percent. The TDEC-calculated ground heat flux also has a good linear relationship with the ITttP-calculated ground heat flux (R2 = 0.99), but their difference is larger (about 9 percent). Furthermore, compared to the HFP01SC direct measurements at a depth of 5 cm, the ground heat flux calculated with the HA technique, the TDEC method, and the ITHP approach can improve the surface energy budget closure by about 6 percent, 7 percent, and 6 percent at SACOL site, respectively. Therefore, the contribution of ground heat flux to the surface energy budget is very important for the semi-arid grassland over the Loess Plateau in China. Using turbulent heat fluxes with common corrections, soil heat storage between the surface and the heat flux plate can improve the surface energy budget closure by about 6 to 7 percent, resulting in a closure of 82 to 83 percent at the SACOL site.展开更多
Based on the nonlinear Lyapunov exponent and nonlinear error growth dynamics, the spatiotemporal distribution and decadal change of the monthly temperature predictability limit(MTPL) in China is quantitatively analyze...Based on the nonlinear Lyapunov exponent and nonlinear error growth dynamics, the spatiotemporal distribution and decadal change of the monthly temperature predictability limit(MTPL) in China is quantitatively analyzed. Data used are daily temperature of 518 stations from 1960 to 2011 in China. The results are summarized as follows:(1) The spatial distribution of MTPL varies regionally. MTPL is higher in most areas of Northeast China, southwest Yunnan Province, and the eastern part of Northwest China. MTPL is lower in the middle and lower reaches of the Yangtze River and Huang-huai Basin.(2)The spatial distribution of MTPL varies distinctly with seasons. MTPL is higher in boreal summer than in boreal winter.(3) MTPL has had distinct decadal changes in China, with increase since the 1970 s and decrease since2000. Especially in the northeast part of the country, MTPL has significantly increased since 1986. Decadal change of MTPL in Northwest China, Northeast China and the Huang-huai Basin may have a close relationship with the persistence of temperature anomaly. Since the beginning of the 21 st century, MTPL has decreased slowly in most of the country, except for the south. The research provides a scientific foundation to understand the mechanism of monthly temperature anomalies and an important reference for improvement of monthly temperature prediction.展开更多
基金jointly supported by the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201506013)the China National Science Foundation(Grant No.41606019)the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund
文摘Previous studies have revealed a combination mode (C-mode) occurring in the Indo-Pacific region, arising from nonlinear interactions between ENSO and the western Pacific warm pool annual cycle. This paper evaluates the simulation of this C-mode and its asymmetric SST response in HadGEM3 and its resolution sensitivity using three sets of simulations at horizontal resolutions of N96, N216 and N512. The results show that HadGEM3 can capture well the spatial pattern of the C-mode associated surface wind anomalies, as well as the asymmetric response of SST in the tropical Pacific, but it strongly overestimates the explained variability of the C-mode compared to the ENSO mode. The model with the three resolutions is able to reproduce the distinct spectral peaks of the C-mode at the near annual combination frequencies, but the performance in simulating the longer periods is not satisfactory, presumably due to the unrealistic simulation of the ENSO mode. Increasing the horizontal resolution can improve the consistency between atmospheric and oceanic representations of the C-mode, but not necessarily enhance the accuracy of C-mode simulation compared with observation.
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CASGrant No. ZDBS-LY-DQC010)+3 种基金the National Natural Science Foundation of China (Grant Nos. 4187601242175045)the Strategic Priority Research Program of CAS (Grant No. XDB42000000)Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)
文摘Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.
基金supported by the National Natural Science Foundation of China (GrantNo. 40725015)
文摘Three approaches, i.e., the harmonic analysis (HA) technique, the thermal diffusion equation and correction (TDEC) method, and the calorimetric method used to estimate ground heat flux, are evaluated by using observations from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) in July, 2008. The calorimetric method, which involves soil heat flux measurement with an HFP01SC self-calibrating heat flux plate buried at a depth of 5 cm and heat storage in the soil between the plate and the surface, is here called the ITHP approach. The results show good linear relationships between the soil heat fluxes measured with the HFP01SC heat flux plate and those calculated with the HA technique and the TDEC method, respectively, at a depth of 5 cm. The soil heat fluxes calculated with the latter two methods well follow the phase measured with the HFP01SC heat flux plate. The magnitudes of the soil heat flux calculated with the HA technique and the TDEC method are close to each other, and they are about 2 percent and 6 percent larger than the measured soil heat flux, respectively, which mainly occur during the nighttime. Moreover, the ground heat fluxes calculated with the TDEC method and the HA technique are highly correlated with each other (R2= 0.97), and their difference is only about 1 percent. The TDEC-calculated ground heat flux also has a good linear relationship with the ITttP-calculated ground heat flux (R2 = 0.99), but their difference is larger (about 9 percent). Furthermore, compared to the HFP01SC direct measurements at a depth of 5 cm, the ground heat flux calculated with the HA technique, the TDEC method, and the ITHP approach can improve the surface energy budget closure by about 6 percent, 7 percent, and 6 percent at SACOL site, respectively. Therefore, the contribution of ground heat flux to the surface energy budget is very important for the semi-arid grassland over the Loess Plateau in China. Using turbulent heat fluxes with common corrections, soil heat storage between the surface and the heat flux plate can improve the surface energy budget closure by about 6 to 7 percent, resulting in a closure of 82 to 83 percent at the SACOL site.
基金supported by the National Basic Research Program of China(2013CB430203)the R&D Special Fund for PublicWelfare Industry(meteorology)(GYHY201306033)the NationalKey Technologies R&D Program of China(2009BAC51B05)
文摘Based on the nonlinear Lyapunov exponent and nonlinear error growth dynamics, the spatiotemporal distribution and decadal change of the monthly temperature predictability limit(MTPL) in China is quantitatively analyzed. Data used are daily temperature of 518 stations from 1960 to 2011 in China. The results are summarized as follows:(1) The spatial distribution of MTPL varies regionally. MTPL is higher in most areas of Northeast China, southwest Yunnan Province, and the eastern part of Northwest China. MTPL is lower in the middle and lower reaches of the Yangtze River and Huang-huai Basin.(2)The spatial distribution of MTPL varies distinctly with seasons. MTPL is higher in boreal summer than in boreal winter.(3) MTPL has had distinct decadal changes in China, with increase since the 1970 s and decrease since2000. Especially in the northeast part of the country, MTPL has significantly increased since 1986. Decadal change of MTPL in Northwest China, Northeast China and the Huang-huai Basin may have a close relationship with the persistence of temperature anomaly. Since the beginning of the 21 st century, MTPL has decreased slowly in most of the country, except for the south. The research provides a scientific foundation to understand the mechanism of monthly temperature anomalies and an important reference for improvement of monthly temperature prediction.