期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy 被引量:7
1
作者 Liping Yang Lemeng Wu +4 位作者 Dongmei Wang Ying Li hongliang dou Mark O.M.Tso Zhizhong Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3148-3158,共11页
Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeox... Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in- creased, which was associated with retinal ganglion cell death in diabetic retinas. The C/ERB ho- mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in- dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu- ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy. 展开更多
关键词 neural regeneration peripheral nerve injury endoplasmic reticulum stress diabetic retinopathy injury of retinal ganglion cells M011er cells ASTROCYTES c-Jun N-terminal kinase caspase-12 protein C/ERB homologous protein retinal microcirculation glial fibrillary acidic protein grant-supportedpaper NEUROREGENERATION
下载PDF
A Review of the Engineering Role of Burrowing Animals: Implication of Chinese Pangolin as an Ecosystem Engineer
2
作者 Song Sun hongliang dou +9 位作者 Shichao Wei Yani Fang Zexu Long Jiao Wang Fuyu An Jinqian Xu Tingting Xue Huangjie Qiu Yan Hua Guangshun Jiang 《Journal of Zoological Research》 2021年第3期1-20,共20页
Ecosystem engineers are organisms that alter the distribution of resources in the environment by creating,modifying,maintaining and/or destroying the habitat.They can affect the structure and function of the whole eco... Ecosystem engineers are organisms that alter the distribution of resources in the environment by creating,modifying,maintaining and/or destroying the habitat.They can affect the structure and function of the whole ecosystem furthermore.Burrowing engineers are an important group in ecosystem engineers as they play a critical role in soil translocation and habitat creation in various types of environment.However,few researchers have systematically summarized and analyzed the studies of burrowing engineers.We reviewing the existing ecological studies of burrowing engineer about their interaction with habitat through five directions:(1)soil turnover;(2)changing soil physicochemical properties;(3)changing plant community structure;(4)providing limited resources for commensal animals;and/or(5)affecting animal communities.The Chinese pangolin(Manis pentadactyla)is a typical example of burrowing mammals,in part(5),we focus on the interspecific relationships among burrow commensal species of Chinese pangolin.The engineering effects vary with environmental gradient,literature indicates that burrowing engineer play a stronger role in habitat transformation in the tropical and subtropical areas.The most common experiment method is comparative measurements(include different spatial and temporal scale),manipulative experiment is relatively few.We found that most of the engineering effects had positive feedback to the local ecosystem,increased plant abundance and resilience,increased biodiversity and consequently improved ecosystem functioning.With the global background of dramatic climate change and biodiversity loss in recent decades,we recommend future studies should improving knowledge of long-term engineering effects on population scale and landscape scale,exploring ecological cascades through trophic and engineering pathways,to better understand the attribute of the burrowing behavior of engineers to restore ecosystems and habitat creation.The review is presented as an aid to systematically expound the engineering effect of burrowing animals in the ecosystem,and provided new ideas and advice for planning and implementing conservation management. 展开更多
关键词 Burrowing engineer Burrow commensal species Chinese pangolin Ecosystem engineer Habitat modification Biodiversity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部