Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
Ultra-cold atoms provide ideal platforms for interferometry.The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time,which enable high accuracy and sensitivity to ...Ultra-cold atoms provide ideal platforms for interferometry.The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time,which enable high accuracy and sensitivity to measurement.Here,we review our efforts to improve the performance of the interferometer.We demonstrate a shortcut method for manipulating ultra-cold atoms in an optical lattice.Compared with traditional ones,this shortcut method can reduce the manipulation time by up to three orders of magnitude.We construct a matter-wave Ramsey interferometer for trapped motional quantum states and significantly increase its coherence time by one order of magnitude with an echo technique based on this method.Efforts have also been made to enhance the resolution by multimode scheme.Application of a noise-resilient multi-component interferometer shows that increasing the number of paths could sharpen the peaks in the time-domain interference fringes,which leads to a resolution nearly twice compared with that of a conventional double-path two-mode interferometer.With the shortcut method mentioned above,improvement of the momentum resolution could also be fulfilled,which leads to atomic momentum patterns less than 0.6hkL. To identify and remove systematic noises,we introduce the methods based on the principal component analysis (PCA) that reduce the noise in detection close to the 1/√2 of the photon-shot noise and separate and identify or even eliminate noises.Furthermore,we give a proposal to measure precisely the local gravity acceleration within a few centimeters based on our study of ultracold atoms in precision measurements.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金Project supported by the National Basic Research Program of China(Grant No.2016YFA0301501)the National Natural Science Foundation of China(Grant Nos.61727819,11934002,91736208,and 11920101004)the Project funded by China Postdoctoral Science Foundation(Grant No.2020TQ0017)。
文摘Ultra-cold atoms provide ideal platforms for interferometry.The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time,which enable high accuracy and sensitivity to measurement.Here,we review our efforts to improve the performance of the interferometer.We demonstrate a shortcut method for manipulating ultra-cold atoms in an optical lattice.Compared with traditional ones,this shortcut method can reduce the manipulation time by up to three orders of magnitude.We construct a matter-wave Ramsey interferometer for trapped motional quantum states and significantly increase its coherence time by one order of magnitude with an echo technique based on this method.Efforts have also been made to enhance the resolution by multimode scheme.Application of a noise-resilient multi-component interferometer shows that increasing the number of paths could sharpen the peaks in the time-domain interference fringes,which leads to a resolution nearly twice compared with that of a conventional double-path two-mode interferometer.With the shortcut method mentioned above,improvement of the momentum resolution could also be fulfilled,which leads to atomic momentum patterns less than 0.6hkL. To identify and remove systematic noises,we introduce the methods based on the principal component analysis (PCA) that reduce the noise in detection close to the 1/√2 of the photon-shot noise and separate and identify or even eliminate noises.Furthermore,we give a proposal to measure precisely the local gravity acceleration within a few centimeters based on our study of ultracold atoms in precision measurements.