期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of Biowaste-Derived Hydrochar on Anaerobic Digestion:Insights into Hydrochar Characteristics
1
作者 hongqiong zhang Xu Wang +3 位作者 Zhaojing Qian Buchun Si Kai Jin Tengfei Wang 《Journal of Renewable Materials》 EI 2023年第10期3647-3657,共11页
Hydrochar prepared with four typical biowastes,pine wood,food waste,digested sewage sludge,and Chlorella were applied for the promotion of anaerobic digestion.The gas production and substrate composition were analyzed... Hydrochar prepared with four typical biowastes,pine wood,food waste,digested sewage sludge,and Chlorella were applied for the promotion of anaerobic digestion.The gas production and substrate composition were analyzed associated with the hydrochar characteristics.The results suggested that Chlorella hydrochar(C-C)showed the highest cumulative yield of methane(approximately 345 mL)with high total organic carbon(TOC)removal efficiency and low volatile fatty acids(VAFs)concentration.Especially,food waste hydrochar(F-C)showed a poor effect on anaerobic digestion and aroused 1.4–1.6 g/L accumulation of VAFs,in which the toxic components may account for the low efficiency.The C-C and sludge hydrochar(S-C)may develop direct interspecific electron transport(DIET)to facilitate the generation of methane by both surface groups and conductivity of the body structure,unlike pinewood hydrochar(P-C),which mainly depended on the aromatic matrix structure of hydrochar body.This work suggested that C-C can be the best candidate for the facilitation of anaerobic digestion,and N-containing biowaste like algae and lignocellulose like pine wood may establish different DIET pathways based on the physicochemical characteristics of hydrochar. 展开更多
关键词 BIOWASTE hydrochar DIET anaerobic digestion METHANE
下载PDF
Optimization of the methane production in batch anaerobic digestion of maize straw by adjustment of total solid and substrate-to-inoculum ratio based on kinetics
2
作者 Feng Zhen Tao Xing +2 位作者 Lianhua Li Yongming Sun hongqiong zhang 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第1期225-231,共7页
Anaerobic digestion(AD)operating under conditions of organic overload stress typically exacerbates the potential for process instability,thereby resulting in significant economic and ecological ramifications.In this i... Anaerobic digestion(AD)operating under conditions of organic overload stress typically exacerbates the potential for process instability,thereby resulting in significant economic and ecological ramifications.In this investigation,an augmented substrate-to-inoculum ratio(S/I)along with varying total solid content(TS)levels was employed to replicate diverse organic loadings,utilizing maize straw and cattle manure.The findings reveal that a moderate augmentation in S/I and TS proves advantageous in augmenting methane yield,while an excessive substrate loading diminishes methane yield,hampers the kinetics of methane production,and even induces severe process instability.Kinetic study also displayed the variation of the model parameters for the first-order model,the modified Gompertze model,and the transfer function model.Both the modified Gompertze model and transfer function model exhibited the same environmental stress trend.Thus,both the increase in particulate content and the increase in S/I had a substantial effect on the substrate conversion rate to methane.Microbial analysis demonstrates the dominant influence of Firmicutes and Methanosarcina under different organic loading stresses.From both a kinetic and a microbiological point of view,this work provides novel insights into the fundamental processes that regulate anaerobic digestion(AD)under varying loading stress.Furthermore,it has significant implications for improving the operating efficiency of AD,which is a significant benefit. 展开更多
关键词 maize straw dry anaerobic digestion methane production microbial characteristics kinetic model
原文传递
Effect of vacuum negative pressure aerobic hydrolysis pretreatment on corn stover anaerobic fermentation
3
作者 Yonghua Xu Yunong Song +2 位作者 Hao Jiang hongqiong zhang Yong Sun 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第2期241-248,共8页
Lignin degradation restricts corn stover anaerobic fermentation efficiency.The vacuum negative pressure aerobic hydrolysis pretreatment of corn stover was tested,and the optimal combined pretreatment conditions were p... Lignin degradation restricts corn stover anaerobic fermentation efficiency.The vacuum negative pressure aerobic hydrolysis pretreatment of corn stover was tested,and the optimal combined pretreatment conditions were presented in this paper.Because of the physical characteristics of light weight and large specific porosity of stover,it led to the formation of a scum layer during the fermentation process and thus reduced the gas production rate.In the pretreatment design,the vacuum conditions(0.02-0.08 MPa)and dwell time(5-20 min)were selected to see the changes of volumetric weight,swelling and specific porosity of corn stover,resulting in an increase of the volumetric weight by 7.18%-28.72%,an increase of the swelling by 3.18%-58.59%,and a decrease of the specific porosity by 9.34%-38.59%,as compared with the CK group.Continuous vacuum negative pressure treatment could discharge the air inside the stover destroy the microstructure,and cause the stover to settle more easily during the aerobic hydrolysis process.The optimal aerobic hydrolysis temperature and time were determined to be 39°C and 12.65 h,respectively.With the optimal pretreatment,the corn stover anaerobic fermentation test realized a cumulative methane yield of 260.44 mL/g VS,22.71%higher than CK group;meanwhile,the hydraulic retention time was shortened by 32.39%. 展开更多
关键词 corn stover VACUUM negative pressure PRETREATMENT aerobic hydrolysis anaerobic fermentation
原文传递
Effects of oxidizing environment on digestate humification and identification of substances governing the dissolved organic matter(DOM)transformation process 被引量:1
4
作者 Yingchao zhang hongqiong zhang +2 位作者 Xinwei Dong Dongbei Yue Ling Zhou 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第8期121-133,共13页
The formation of humic-like acids(HLAs)is an essential process for converting liquid digestate into organic soil amendments to enhance agricultural sustainability.The aim of this study was to investigate the impact of... The formation of humic-like acids(HLAs)is an essential process for converting liquid digestate into organic soil amendments to enhance agricultural sustainability.The aim of this study was to investigate the impact of oxygen and/or MnO_(2)on the production of HLAs.Herein,abiotic humification performance of the digestate dissolved organic matter(DOM)is investigated with fluxes of air and N2 in the absence and presence of MnO_(2).Our results demonstrated that the fate of digestate DOM greatly depends on the oxidizing environment,the MnO_(2)enhanced nitrogen involved in the formation of HLAs.The synergistic effects of MnO_(2)and oxygen effectively improved the production of HLAs,and the corresponding component evolution was analyzed using spectroscopic evidence.The twodimensional correlation spectroscopy results demonstrated that the reaction sequence of digestate DOM followed the order of protein-like substances,substances with an absorbance at 325 nm,substances with UV absorbance at 254 nm and HLAs.Additionally,excitation emission matrix fluorescence combined with parallel factor analysis(EEM-PARAFAC)showed that tryptophan-like C3 was more prone to transformation than tyrosine-like C2 and was responsible for the humification process.The substance with an absorbance at 325 nm was a reaction intermediate in the transformation process of protein-like substances to HLAs.The above findings can be used to promote the production of liquid fertilizer associated with carbon sequestration as well as the sustainable development of biogas production. 展开更多
关键词 Liquid digestate MnO_(2) Oxygen DOM transformation Humic-like acids
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部