期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Light-driven single-cell rotational adhesion frequency assay 被引量:6
1
作者 Yaoran Liu hongru ding +3 位作者 Jingang Li Xin Lou Mingcheng Yang Yuebing Zheng 《eLight》 2022年第1期154-164,共11页
The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems.Many techniques have been developed to measure the ligand-receptor binding k... The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems.Many techniques have been developed to measure the ligand-receptor binding kinetics at the single-cell level.However,few techniques can measure the physiologically relevant shear binding affinity over a single cell in the clinical environment.Here,we develop a new optical technique,termed single-cell rotational adhesion frequency assay(scRAFA),that mimics in vivo cell adhesion to achieve label-free determination of both homogeneous and heterogeneous binding kinetics of targeted cells at the subcellular level.Moreover,the scRAFA is also applicable to analyze the binding affinities on a single cell in native human biofluids.With its superior performance and general applicability,scRAFA is expected to find applications in study of the spatial organization of cell surface receptors and diagnosis of infectious diseases. 展开更多
关键词 DIAGNOSIS KINETICS ROTATIONAL
原文传递
Atomistic modeling and rational design of optothermal tweezers for targeted applications
2
作者 hongru ding Pavana Siddhartha Kollipara +1 位作者 Linhan Lin Yuebing Zheng 《Nano Research》 SCIE EI CAS CSCD 2021年第1期295-303,共9页
Optical manipulation of micro/nanoscale objects is of importance in life sciences,colloidal science,and nanotechnology.Optothermal tweezers exhibit superior manipulation capability at low optical intensity.However,our... Optical manipulation of micro/nanoscale objects is of importance in life sciences,colloidal science,and nanotechnology.Optothermal tweezers exhibit superior manipulation capability at low optical intensity.However,our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers.Herein,we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers,which enables us to rationally design the tweezers for optimum performance in targeted applications.Specifically,we have revealed that the non-uniform temperature distribution induces water polarization and charge separation,which creates the thermoelectric field dominating the optothermal trapping.We further design experiments to systematically verify our atomistic simulations.Guided by our new model,we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes.Moreover,we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge,which has been challenging for conventional optical tweezers.With the atomistic understanding that enables the performance optimization and function expansion,optothermal tweezers will further their impacts. 展开更多
关键词 optothermal tweezers optical tweezers optical manipulation THERMOPHORESIS molecular dynamics simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部