UiO-67 is a Zr-based metal–organic framework(MOF) containing an organic linker namely, the dianion of biphenyl-4,40-dicarboxylic acid(bpdc). Ce4+metal ions(0.02 Ce to Zr atom ratio) were incorporated into UiO-67 via ...UiO-67 is a Zr-based metal–organic framework(MOF) containing an organic linker namely, the dianion of biphenyl-4,40-dicarboxylic acid(bpdc). Ce4+metal ions(0.02 Ce to Zr atom ratio) were incorporated into UiO-67 via partially replacing bpdc with the dianion of 2,20-bipyridine-5,50-dicarboxylic acid(bpydc);thus, the latter forms a bpydc-Ce complex. The resulting product(i.e., UiO-67-Ce) demonstrated a photocatalytic hydrogen evolution rate that was over 10 times higher than that of UiO-67. Through this modification, a new energy transfer channel is opened up. The energy transfer between the bpdc and bpydc-Ce ligands(i.e., from excited bpdc to bpydc-Ce) weakened the recombination of the charge carriers, which was confirmed by photoluminescence, emission lifetime, and transient absorption measurements. This study presents a new way to construct highly efficient MOF photocatalysts.展开更多
基金Hongtao Bian acknowledges the support from the National Natural Science Foundation of China(No.22173054)Hongtao Bian also thanks the financial support from Fundamental Research Funds for the Central Universities(GK202001009)+2 种基金Natural Science Fundamental Research Plan of Shaanxi Province(No.2024JC-JCQN-15)111 Project(B14041)Program for Changjiang Scholars and the Innovative Research Team in University(IRT-14R33).
基金supported by the National Natural Science Foundation of China(21333006,21573135,U1832145,11374190,51321091,and 51602179)Taishan Scholar Foundation of Shandong Province,China,and Young Scholars Program(2016WLJH16)
文摘UiO-67 is a Zr-based metal–organic framework(MOF) containing an organic linker namely, the dianion of biphenyl-4,40-dicarboxylic acid(bpdc). Ce4+metal ions(0.02 Ce to Zr atom ratio) were incorporated into UiO-67 via partially replacing bpdc with the dianion of 2,20-bipyridine-5,50-dicarboxylic acid(bpydc);thus, the latter forms a bpydc-Ce complex. The resulting product(i.e., UiO-67-Ce) demonstrated a photocatalytic hydrogen evolution rate that was over 10 times higher than that of UiO-67. Through this modification, a new energy transfer channel is opened up. The energy transfer between the bpdc and bpydc-Ce ligands(i.e., from excited bpdc to bpydc-Ce) weakened the recombination of the charge carriers, which was confirmed by photoluminescence, emission lifetime, and transient absorption measurements. This study presents a new way to construct highly efficient MOF photocatalysts.