Microwave absorbing materials(MAMs)with wide effective absorption bandwidth(EAB)and low filling ratio are highly desirable for practical applications.Rational design in components and structures is one of the effectiv...Microwave absorbing materials(MAMs)with wide effective absorption bandwidth(EAB)and low filling ratio are highly desirable for practical applications.Rational design in components and structures is one of the effective strategies to achieve MAMs with high performance.Herein,double-shelled hollow(DSH)polypyrrole(PPy)nanotubes were synthesized with hydrochloric acid(HCl)and sodium pstyrene sulfonate(SS)co-doping polymerization process using manganese dioxide(MnO_(2))nanorods as a self-sacrifice template.With the increase of HCl concentration,the 1D MnO_(2) core diminishes gradually to form the MnO_(2)@PPy coaxial nanostructures and finally the DSH PPy nanotube,which tunes the microwave absorption performance.Importantly,the DSH PPy nanotubes exhibit excellent microwave absorption of an optimal reflection loss of–50.4 dB and a wide EAB of 7.7 GHz with a low filling ratio of 5 wt%in a paraffin wax matrix.The excellent microwave absorption is believed to be mainly attributed to the enhanced synergistic effects of interfacial polarization and conduction loss arising from the unique DSH structure and the co-doping polymerization.展开更多
基金supported by the National Natural Science Foundation of China(No.22165032 and 22265031)the Applied Basic Research Fund of Yunnan Province(No.2019FB129)the Major Science and Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province(No.2021102AB080019-2)。
文摘Microwave absorbing materials(MAMs)with wide effective absorption bandwidth(EAB)and low filling ratio are highly desirable for practical applications.Rational design in components and structures is one of the effective strategies to achieve MAMs with high performance.Herein,double-shelled hollow(DSH)polypyrrole(PPy)nanotubes were synthesized with hydrochloric acid(HCl)and sodium pstyrene sulfonate(SS)co-doping polymerization process using manganese dioxide(MnO_(2))nanorods as a self-sacrifice template.With the increase of HCl concentration,the 1D MnO_(2) core diminishes gradually to form the MnO_(2)@PPy coaxial nanostructures and finally the DSH PPy nanotube,which tunes the microwave absorption performance.Importantly,the DSH PPy nanotubes exhibit excellent microwave absorption of an optimal reflection loss of–50.4 dB and a wide EAB of 7.7 GHz with a low filling ratio of 5 wt%in a paraffin wax matrix.The excellent microwave absorption is believed to be mainly attributed to the enhanced synergistic effects of interfacial polarization and conduction loss arising from the unique DSH structure and the co-doping polymerization.