期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Regulatory Effect of Shenge Yifei Capsule on TGF-β1/Smad Signaling Pathway in Rats with Chronic Obstructive Pulmonary Disease 被引量:1
1
作者 Ying HAO hongwei zhong +1 位作者 Yuanyun GU Hui CHEN 《Medicinal Plant》 CAS 2020年第1期44-47,共4页
[Objectives]This study aimed to study the effects of Shenge Yifei capsule on the TGF-β1/Smad signaling pathway in rats with chronic obstructive pulmonary disease(COPD).[Methods]Ten rats were randomly selected as the ... [Objectives]This study aimed to study the effects of Shenge Yifei capsule on the TGF-β1/Smad signaling pathway in rats with chronic obstructive pulmonary disease(COPD).[Methods]Ten rats were randomly selected as the control group,and the other 40 rats were selected for modeling by fumigation combined with Klebsiella pneumoniae infection.A total of 38 rats were successfully modeled.They were randomly divided into model group(8 rats),low-dose Shenge Yifei capsule group(10 rats),high-dose Shenge Yifei capsule group(10 rats)and theophylline group(10 rats)in accordance with the principle of half male and half female.The rats in the model and control groups were given with distilled water by gavage,and the rats in the drug administration groups were given with corresponding drugs.The TGF-β1 level in the serum,and the expression levels of TGF-β1,Smad2,Smad3 and Smad7 and TGF-β1,Smad3 and Smad7 in airway tissues were detected.[Results]After 12 weeks,the serum TGF-β1 levels of the theophylline group and high-dose Shenge Yifei capsule group were lower than that of the low-dose Shenge Yifei capsule group(P<0.05).The expression levels of TGF-β1 and Smad3 in the theophylline group and high-dose Shenge Yifei capsule group were lower than that in the low-dose Shenge Yifei capsule group(P<0.05).The expression levels of TGF-β1 and Smad3 in the high-dose Shenge Yifei capsule group were lower than those in the low-dose Shenge Yifei capsule group and theophylline group(P<0.05).The expression levels of Smad7 and the proteins in the model group were lower than those in the other groups(P<0.05).The expression levels of Smad7 in the theophylline group and high-dose Shenge Yifei capsule group were higher than that in the low-dose Shenge Yifei capsule group(P<0.05).After 18 weeks,no significant difference was found in serum TGF-β1 level among the theophylline group and low and high-dose Shenge Yifei capsule groups(P>0.05).The expression levels of Smad7 and the proteins in the model group were lower than those in the other groups.The expression level of Smad7 in the high-dose Shenge Yifei capsule group was lower than that in the theophylline group(P<0.05).[Conclusions]Shenge Yifei capsule can regulate the TGF-β1/Smads signaling pathway.They can down-regulate the expression of TGF-β1,Smad2 and Smad3 and up-regulate the expression of Smad7,reducing the degree of airway modeling,delaying the development of COPD disease.Conventional high-dose Shenge Yifei capsule is more effective in inhibiting the expression of Smad2. 展开更多
关键词 CHRONIC OBSTRUCTIVE PULMONARY disease(COPD) Shenge Yifei CAPSULE Tansforming growth factor-β1 Signaling pathway Rat
下载PDF
Time-dependent Ginzburg–Landau equations for multi-gap superconductors
2
作者 李敏斯 古家虹 +3 位作者 杜龙 钟红伟 周丽娟 陈庆华 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期385-388,共4页
We numerically solve the time-dependent Ginzburg–Landau equations for two-gap superconductors using the finite-element technique. The real-time simulation shows that at low magnetic field, the vortices in small-size ... We numerically solve the time-dependent Ginzburg–Landau equations for two-gap superconductors using the finite-element technique. The real-time simulation shows that at low magnetic field, the vortices in small-size samples tend to form clusters or other disorder structures. When the sample size is large, stripes appear in the pattern. These results are in good agreement with the previous experimental observations of the intriguing anomalous vortex pattern, providing a reliable theoretical basis for the future applications of multi-gap superconductors. 展开更多
关键词 vortex multi-gap SUPERCONDUCTIVITY time dependent finite element technique
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部