Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aer...Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aerospace applications.Efficient architecture design and optimization of composites are promi-nent yet remain high challenging for realizing the above requirements.Herein,binary reinforcements of networked silicon nitride nanowires(Si_(3)N_(4) nws)and interconnected graphene(GE)have been successfully constructed into C f/PyC by precursor impregnation-pyrolysis and chemical vapor deposition.Notably,net-worked Si_(3)N_(4) nws are uniformly distributed among the carbon fibers,while interconnected GE is firmly rooted on the surface of both networked Si_(3)N_(4) nws and carbon fibers.In the networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC,networked Si_(3)N_(4) nws significantly boost the cohesion strength of PyC,while GE markedly improves the interface bonding of both Si_(3)N_(4) nws/PyC and fiber/PyC.Benefiting from the synergistic reinforcement effect of networked Si_(3)N_(4) nws and interconnected GE,the C_(f)/PyC have a prominent enhancement in mechanical(shear and compressive strengths increased by 119.9% and 52.84%,respectively)and friction(friction coefficient and wear rate reduced by 25.40% and 60.10%,respectively)as well as anti-ablation(mass ablation rate and linear ablation rate decreased by 71.25% and 63.01%,respectively).This present strategy for networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC provides a dominant route to produce mechanically robust,frictionally resisting and ablatively resistant materials for use in advanced aerospace applications.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51872232)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(No.136-QP-2015)+4 种基金the“111”project of China(No.B08040)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S202010699336)the Joint Funds of the National Natural Science Foundation of China(No.U21B2067)the Key Scientific and Technological Innovation Research Team of Shaanxi Province(No.2022TD-31)the Key R&D Program of Shaanxi Province(No.2021ZDLGY14-04).
文摘Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aerospace applications.Efficient architecture design and optimization of composites are promi-nent yet remain high challenging for realizing the above requirements.Herein,binary reinforcements of networked silicon nitride nanowires(Si_(3)N_(4) nws)and interconnected graphene(GE)have been successfully constructed into C f/PyC by precursor impregnation-pyrolysis and chemical vapor deposition.Notably,net-worked Si_(3)N_(4) nws are uniformly distributed among the carbon fibers,while interconnected GE is firmly rooted on the surface of both networked Si_(3)N_(4) nws and carbon fibers.In the networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC,networked Si_(3)N_(4) nws significantly boost the cohesion strength of PyC,while GE markedly improves the interface bonding of both Si_(3)N_(4) nws/PyC and fiber/PyC.Benefiting from the synergistic reinforcement effect of networked Si_(3)N_(4) nws and interconnected GE,the C_(f)/PyC have a prominent enhancement in mechanical(shear and compressive strengths increased by 119.9% and 52.84%,respectively)and friction(friction coefficient and wear rate reduced by 25.40% and 60.10%,respectively)as well as anti-ablation(mass ablation rate and linear ablation rate decreased by 71.25% and 63.01%,respectively).This present strategy for networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC provides a dominant route to produce mechanically robust,frictionally resisting and ablatively resistant materials for use in advanced aerospace applications.