Cancer is a major cause of morbidity and mortality all over the world and a promising area of cancer research is concentrated on chemoprevention by nutritional compounds. Capsaicin, traditionally used as a food additi...Cancer is a major cause of morbidity and mortality all over the world and a promising area of cancer research is concentrated on chemoprevention by nutritional compounds. Capsaicin, traditionally used as a food additive and an analgesic, is one of the main pungent ingredients in chili peppers. Recent studies have shown that capsaicin has anti-cancer effects in various types of cancer model. The purpose of this review is to outline the anticarcinogenic effect of capsaicin and its mechanism.展开更多
Sorption kinetics of organic compounds on biochars is important for understanding the retardation of mobility and bioavailability of organic compounds.Herein,sorption kinetics of 1,3,5-trinitrobenzene on biochars prep...Sorption kinetics of organic compounds on biochars is important for understanding the retardation of mobility and bioavailability of organic compounds.Herein,sorption kinetics of 1,3,5-trinitrobenzene on biochars prepared from 200 to 700℃was investigated to explore the sorption process.Loose partition matrix and condensed partition matrix were formed at relatively low and moderate temperatures,respectively.However,biochars produced at relatively high temperatures formed rich pore structures.Therefore,sorption equilibrium time of 1,3,5-trinitrobenzene increased with increasing preparation temperature from 200 to 350℃due to the slower diffusion rate in the more condensed matrix,and then decreased when preparation temperature was higher than 400℃because of the faster adsorption rate in the greater number of pores.Linear positive relationship between matrix diffusion rates of 1,3,5-trinitrobenzene on biochars prepared at 200,250,300,350℃and H/C ratios of biochars was observed,suggesting that the inhibition of partition process was caused by the condensed matrix in biochars.Linear positive relationships between adsorption rates(i.e.,fast outer diffusion rate and slow pore diffusion rate)of 1,3,5-trinitrobenzene on biochars prepared at 400,450,550,700℃and graphite defects of biochars were observed,because the increase of graphite defects of biochars could promote the adsorption by increasing the quantity of fast diffusion channels and sorption sites.This study reveals the underlying mechanisms of sorption kinetics for organic compounds with relatively large size on biochars,which has potential guidance for the application of biochars and prediction of the environmental risks of organic compounds.展开更多
Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy ...Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy that warrants further investigation. However, little is known about the key pathway that is activated in TAMs. In this study, infitrating CD206^(+) TAMs in CRC were sorted and subjected to RNA-seq analysis. Differentially expressed genes were found to be enriched in unfolded protein response/endoplasmic reticulum stress response processes, and XBP1 splicing/activation was specifically observed in TAMs. XBP1 activation in TAMs promoted the growth and metastasis of CRC. Ablation of XBP1 inhibited the expression of the pro-tumor cytokine signature of TAMs, including IL-6, VEGFA, and IL-4. Simultaneously, XBP1 depletion could directly inhibit the expression of SIRPα and THBS1, thereby blocking “don’t eat me” recognition signals and enhancing phagocytosis. Therapeutic XBP1 gene editing using AAV2-sgXBP1 enhanced the anti-tumor activity. Together, XBP1 activation in TAMs drives CRC progression by elevating pro-tumor cytokine expression and secretion, as well as inhibiting macrophage phagocytosis. Targeting XBP1 signaling in TAMs may be a potential strategy for CRC therapy.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFC1501402)the National Natural Science Foundation of China (Grant Nos. 41830104, 41375148, 41675022)+2 种基金Belmont Forum and JPI Climate Collaborative Research Action with NSFC (Grant No. 41661144007)the “Hundred Talents Program” of the Chinese Academy of Sciencesthe Jiangsu Provincial 2011 Program (Collaborative Innovation Center of Climate Change)
文摘Cancer is a major cause of morbidity and mortality all over the world and a promising area of cancer research is concentrated on chemoprevention by nutritional compounds. Capsaicin, traditionally used as a food additive and an analgesic, is one of the main pungent ingredients in chili peppers. Recent studies have shown that capsaicin has anti-cancer effects in various types of cancer model. The purpose of this review is to outline the anticarcinogenic effect of capsaicin and its mechanism.
基金the National Key Research and Development Program of China(2021YFC1809204 and 2017YFA0207001)the National Natural Science Foundation of China(21777138)the Key Research and Development Program of Zhejiang Province,China(2020C03011 and 2021C03167).
文摘Sorption kinetics of organic compounds on biochars is important for understanding the retardation of mobility and bioavailability of organic compounds.Herein,sorption kinetics of 1,3,5-trinitrobenzene on biochars prepared from 200 to 700℃was investigated to explore the sorption process.Loose partition matrix and condensed partition matrix were formed at relatively low and moderate temperatures,respectively.However,biochars produced at relatively high temperatures formed rich pore structures.Therefore,sorption equilibrium time of 1,3,5-trinitrobenzene increased with increasing preparation temperature from 200 to 350℃due to the slower diffusion rate in the more condensed matrix,and then decreased when preparation temperature was higher than 400℃because of the faster adsorption rate in the greater number of pores.Linear positive relationship between matrix diffusion rates of 1,3,5-trinitrobenzene on biochars prepared at 200,250,300,350℃and H/C ratios of biochars was observed,suggesting that the inhibition of partition process was caused by the condensed matrix in biochars.Linear positive relationships between adsorption rates(i.e.,fast outer diffusion rate and slow pore diffusion rate)of 1,3,5-trinitrobenzene on biochars prepared at 400,450,550,700℃and graphite defects of biochars were observed,because the increase of graphite defects of biochars could promote the adsorption by increasing the quantity of fast diffusion channels and sorption sites.This study reveals the underlying mechanisms of sorption kinetics for organic compounds with relatively large size on biochars,which has potential guidance for the application of biochars and prediction of the environmental risks of organic compounds.
基金This work was supported by the National Natural Science Foundation of China(81772638 and 81903025)CAMS Innovation Fund for Medical Sciences(2016-I2M-1-001).
文摘Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy that warrants further investigation. However, little is known about the key pathway that is activated in TAMs. In this study, infitrating CD206^(+) TAMs in CRC were sorted and subjected to RNA-seq analysis. Differentially expressed genes were found to be enriched in unfolded protein response/endoplasmic reticulum stress response processes, and XBP1 splicing/activation was specifically observed in TAMs. XBP1 activation in TAMs promoted the growth and metastasis of CRC. Ablation of XBP1 inhibited the expression of the pro-tumor cytokine signature of TAMs, including IL-6, VEGFA, and IL-4. Simultaneously, XBP1 depletion could directly inhibit the expression of SIRPα and THBS1, thereby blocking “don’t eat me” recognition signals and enhancing phagocytosis. Therapeutic XBP1 gene editing using AAV2-sgXBP1 enhanced the anti-tumor activity. Together, XBP1 activation in TAMs drives CRC progression by elevating pro-tumor cytokine expression and secretion, as well as inhibiting macrophage phagocytosis. Targeting XBP1 signaling in TAMs may be a potential strategy for CRC therapy.